
VideoF2B

Alberto Solera

Apr 27, 2024

TABLE OF CONTENTS

1 Installing VideoF2B 3

2 The User Interface 5

3 Ways to use VideoF2B 7
3.1 Basic . 7
3.2 Augmented Reality . 8

4 Field setup 9

5 Placing the Camera 11
5.1 General Procedure . 11
5.2 Determining Camera Distance . 12

6 Producing Basic videos 15

7 Producing Augmented-Reality Videos 19

8 Camera Calibration 21
8.1 Obtain the Calibration Pattern . 21
8.2 Record the Video . 21
8.3 Process the Video . 23

9 Loading a Flight 27

10 Locating a Flight 29

11 The World Coordinate System 33

12 User Controls 35
12.1 Pausing/Resuming Processing . 36
12.2 Clearing the Trace . 36
12.3 Manipulating the Flight Hemisphere . 36
12.4 Displaying Nominal Figures . 37
12.5 Displaying Start/End Points . 37
12.6 Displaying Diagnostic Points . 38

13 Cheatsheet of User Controls 41

14 Getting help 43

15 FAQ 45

i

16 Glossary 47

17 videof2b 49
17.1 videof2b package . 49

18 Guide for Editors of This Guide 81

Python Module Index 83

Index 85

ii

VideoF2B

Hello everyone!

VideoF2B is a desktop application that draws figures in videos of Control Line F2B stunt flights.

To get started, navigate the table of contents or follow one of these links:

If you find any errors, omissions, opportunities for improvement, etc., let us know via email or GitHub!

TABLE OF CONTENTS 1

https://videof2b.blogspot.com/
https://videof2b.readthedocs.io/en/latest/installing.html
https://videof2b.readthedocs.io/_/downloads/en/latest/pdf/
mailto:videof2b.dev@gmail.com
https://github.com/alsolera/VideoF2B/issues

VideoF2B

2 TABLE OF CONTENTS

CHAPTER

ONE

INSTALLING VIDEOF2B

VideoF2B is a single-file executable. Installation is simple: just download the appropriate file for your operating system.

Choose instructions below based on your operating system:

1. Download the latest VideoF2B.exe from here.

2. Move the file to any folder of your choice.

3. Run the application by double-clicking it.

4. Enjoy!

1. Download the latest videof2b binary from here.

2. Move the file to any directory of your choice.

3. Run the application.

4. Enjoy!

Having trouble with installation? See Getting help or FAQ for guidance.

3

https://github.com/alsolera/VideoF2B/releases
https://github.com/alsolera/VideoF2B/releases

VideoF2B

4 Chapter 1. Installing VideoF2B

CHAPTER

TWO

THE USER INTERFACE

VideoF2B processes one video at a time in the main window.

Fig. 2.1: The main VideoF2B window

The general areas of the main application window are as follows:

• The menu bar at the top provides access to general operations in VideoF2B. Use the File menu to load videos
for processing. The Tools menu provides useful tools and calculators.

• User controls are enabled when processing Augmented-Reality videos. This area is disabled when processing
Basic videos.

• The video area is the largest portion of the main window. It displays the video that is being processed.

5

VideoF2B

• Messages to the user are displayed in the message area below the video and user controls. Every message is
time-stamped with the local date and time of the user’s computer.

• The status bar along the bottom displays the name of the loaded video file, occasional instructions, the elapsed
time in the video, and a progress bar.

6 Chapter 2. The User Interface

CHAPTER

THREE

WAYS TO USE VIDEOF2B

The most prominent feature of VideoF2B is the drawing, or tracing, of a path behind a Control Line aircraft in video.
These traces help us to visualize the figures that a Stunt pilot performs during a flight.

There are two general ways you can use VideoF2B to produce videos: Basic, and Augmented Reality.

3.1 Basic

This is the simplest use of VideoF2B. The result is a video where the path of the aircraft is traced with a colored line.
No additional geometry is drawn.

Fig. 3.1: Example of Basic video production in progress.

7

VideoF2B

To learn how to produce Basic video, see Producing Basic videos.

3.2 Augmented Reality

In this mode, VideoF2B draws the traced path as well as reference geometry that includes a wireframe of the flight
hemisphere and all F2B Stunt figures of the correct shape and size per the current FAI rules.

Fig. 3.2: Example of AR video production in progress.

To learn how to produce Augmented Reality video, see Producing Augmented-Reality videos.

8 Chapter 3. Ways to use VideoF2B

CHAPTER

FOUR

FIELD SETUP

Before you go to the field, please read Placing the Camera to learn how to place the camera correctly in the field for
best results.

Important: DO NOT record the videos handheld!
ALWAYS mount the camera to a sturdy tripod or similar.

DO NOT move or adjust the camera setup while recording a flight.

To produce Basic videos of flights, you only need a suitable camera and a tripod.

TODO: photo of an example setup for basic video.

To produce AR videos, more effort may be required. If your flying site already has FAI F2B markers installed around
the flight circle, then the surveying work is already done. Just measure the distance from circle center to the markers.
The elevation of the markers above the circle center should be 1.5 meters in that case.

TODO: photo of an example setup for AR video.

If your field does not have F2B markers, you can install them yourself with some specialized equipment. You will need
at least a self-leveling rotary laser system and a laser distance measuring tool.

TODO: perhaps a separate chapter on how to DIY field markers, the recommended layout tools and tech-
nique, etc.???

The recommended dimensions and placement of markers are described in Annex 4F, Appendix II of the FAI Sporting
Code.

9

https://www.fai.org/sites/default/files/sc4_vol_f2_controlline_24.pdf
https://www.fai.org/sites/default/files/sc4_vol_f2_controlline_24.pdf

VideoF2B

10 Chapter 4. Field setup

CHAPTER

FIVE

PLACING THE CAMERA

Camera placement is important for capturing quality video of a Stunt flight. While it is acceptable to place the camera
farther than recommended and capturing the entire flight hemisphere, it is generally preferable to capture as much of the
core of maneuver space as possible by placing the camera closer. This approach sacrifices the outer edges of the base;
but takeoff, level/inverted flight, and landing maneuvers are not easy to evaluate in video anyway. The other maneuvers
should be the primary focus of video recording.

5.1 General Procedure

1. Select a location outside the flight circle upwind of the expected maneuvers. This is typically where the contest
judges stand. The correct distance of the camera from the center of the circle depends on the focal length of your
optical system. Details are discussed below.

2. Deploy your tripod at the selected location. Weigh it down if possible so that it remains stable.

3. Mount the camera on the tripod. The result video must be in landscape orientation. If using a mobile device,
this means that you must orient the device horizontally.

4. Adjust the tripod so that the camera height is approximately between 1.0—1.5 m (about 3—5 ft).

5. Turn on the camera and make sure it is in video mode. In photo mode the aspect ratio of the image frame will
likely be different from that of the video, resulting in incorrect alignment.

6. Point the camera approximately at the center of the circle.

7. Tilt the camera upward so that there is a visible margin between the pilot’s feet at the center of the circle and
the bottom edge of the frame. During this adjustment make sure that the camera is level. Most modern cameras
have a built-in leveling guide—take advantage of it.

8. Pan the camera so that the frame’s vertical centerline aligns with the center of the flight circle.

When the above steps are followed, you will find that the top of the flight hemisphere is near the top of the frame in
your AR videos. You will also generally find that the center of the frame points somewhat above the 45° elevation at
the far side of the hemisphere. This is usually the desired outcome.

11

VideoF2B

5.2 Determining Camera Distance

When you don’t know the focal length of your camera system, the camera distance must be determined by trial and
error in the field. However, if you know your system’s focal length, we recommend that you use this Field of View
calculator to determine your camera system’s angle of view. Look for the value labeled “Height” in degrees, in the
section “Angle of View”:

Fig. 5.1: FOV calculator (via scantips.com).

If documentation for your lens is available, verify that your result is reasonably close to the manufacturer’s listed
specifications.

VideoF2B includes a calculator for estimating the camera distance from circle center that will provide the best video
coverage. To use it, choose Tools → Place camera.. in the main menu:

Hint: Hover the mouse cursor over the values in the tables for detailed explanations of each value.

Enter the input values to the best of your knowledge:

• The flight radius R is the distance from the pilot’s chest to the centerline of the aircraft.

• The camera height C is relative to the flight base. For example, if the camera is 1 m above the pilot’s feet, then C
= -0.5.

• Ground level G is also relative to the flight base. Under F2B rules, this value in meters is -1.50 and there should
be no reason to adjust it.

12 Chapter 5. Placing the Camera

https://www.scantips.com/lights/fieldofview.html#top
https://www.scantips.com/lights/fieldofview.html#top

VideoF2B

Fig. 5.2: Camera placement calculator in VideoF2B.

• Camera FOV angle A is the maximum vertical angle of view of your camera system as determined above.

As you adjust each input value, the values in the Results table will update accordingly. The values of interest are in the
row labeled Camera distance. These numbers represent the range of recommended distances for the camera. Place
the camera within this range for best results.

Danger: Please be aware that the outboard wing of the aircraft extends outside the flight hemisphere, and the pilot
never stays exactly in the center of the circle during a flight. Do not place the camera too close to the flight radius
even when the calculated “nearest” distance value is very close to R!

Hint: You may use any suitable distance units for values of R, C, and G, just stay consistent. The default values are in
meters. All angular values are always in degrees.

Important: For safety reasons, the calculator does not allow the camera inside the flight hemisphere. That is,
the calculated “nearest” value of “camera distance” should never be less than the flight radius R. If you encounter a
calculation where this is not true, please submit a bug report with your input values.

With the above precautions in mind, you are ready to produce Basic or Augmented-Reality videos.

For the technically inclined. . .
There are two criteria for camera placement.

The first may be obvious—the center of the flight circle must be visible in the FOV so that users may select it during
AR processing. This is shown in the calculator diagram by extending the bottom of the FOV angle A to the point on
the ground at the pilot’s feet.

The second criterion may not be immediately obvious. It is based on two facts:

5.2. Determining Camera Distance 13

VideoF2B

1. The “camera cone” formed by the camera’s angle of view separates the AR hemisphere into two parts: the “near”
and the “far” volume. Image space is represented by integers, resulting in a “dead zone” between the two volumes
where the aircraft’s location cannot be determined. Whenever the aircraft passes through this zone, the motion
trace generated by VideoF2B “jumps” across the boundary without any information between the two points. Note
that this information is irrelevant during AR processing, but it is vitally important during 3D tracking.

2. The Overhead Eight maneuver is critically close to the “dead zone”. To minimize the chances of the aircraft
passing across this boundary during the overhead eight, the calculator ensures that the point labeled as “Tangent
elevation” on the diagram is never above the 45° elevation of the flight hemisphere. This criterion enforces a
visible gap in video between the circle of 45° elevation (drawn in bright green) and the visible edge of the flight
hemisphere (drawn in magenta):

TODO: an example AR sphere due to a badly placed camera (too far from circle) that results in loss of “gap”.

14 Chapter 5. Placing the Camera

CHAPTER

SIX

PRODUCING BASIC VIDEOS

A Basic video contains a colored trace of the path of the aircraft. No additional geometry is drawn.

Here is an example:

To produce a Basic video, follow these steps:

1. Record a Stunt flight using a video camera. For guidelines on how to position the camera in the field, see Placing
the Camera. Save the video file to your computer.

2. Start the VideoF2B application. The main window looks like this when the application starts:

3. Choose File → Load in the main menu.

4. Click the Browse for file button of the Video source box:

5. Choose the desired video on your computer and click the Open button.

6. Click the Load button or just press the Enter key. The video will begin processing in the main window.

7. The trace behind the aircraft grows up to 15 seconds long. During processing, you can clear the trace at any time
by pressing the Space bar.

15

VideoF2B

Fig. 6.1: Main window of VideoF2B.

16 Chapter 6. Producing Basic videos

VideoF2B

Fig. 6.2: The “Load a Flight” dialog window. Just choose your video file from here.

Fig. 6.3: File browsing dialog. This may look different on your computer.

17

VideoF2B

8. If you wish to stop processing the video for any reason before VideoF2B finishes tracing it, press the Esc key on
the keyboard. This will stop the tracing, and the result will be a partially processed video.

9. When finished, you will find the traced video file in the same location as the original video. The traced video
will have the same name as the original, but with a _out suffix. For example, if your original video is named
Flight 1.mp4, the traced video will be named Flight 1_out.mp4.

18 Chapter 6. Producing Basic videos

CHAPTER

SEVEN

PRODUCING AUGMENTED-REALITY VIDEOS

An Augmented-Reality (AR) video contains overlays of various reference graphics on top of the original video footage.
In addition to the motion trace behind the model aircraft, the AR graphics may include the following:

• A wireframe representation of the flight hemisphere, which includes:

– the base;

– tolerance horizontals 0.30 m above and 0.30 m below the base;

– the 45° horizontal;

– verticals at every 1/8 lap, from base to top of circle; and

– the visible edge of the hemisphere.

• Marker points.

• Nominal figure representations according to current rules.

• Start and end points of maneuvers.

• Diagnostic points in figures.

Here is an example:

To produce an AR video, follow these steps:

19

VideoF2B

1. Calibrate your camera.

2. To enable AR graphics, see Field setup.

3. Record a Stunt flight using a video camera. For guidelines on how to position the camera in the field, see Placing
the Camera. Save the video file to your computer.

4. Load the flight into VideoF2B.

5. Locate the flight in VideoF2B.

6. Process the flight video. See User Controls for guidance on manipulation of AR graphics.

7. When finished, you will find the processed AR video file in the same location as the original video. The AR
video will have the same name as the original, but with a _out suffix. For example, if your original video is
named Flight 1.mp4, the traced video will be named Flight 1_out.mp4.

20 Chapter 7. Producing Augmented-Reality Videos

CHAPTER

EIGHT

CAMERA CALIBRATION

Before you can produce Augmented-Reality videos, you must calibrate your camera system. Camera calibration ac-
complishes two things in one step. First, it calculates distortion parameters of the camera’s optical system. This allows
the processor in VideoF2B to “undistort” every video frame so that straight lines in the real world remain straight
in video. Undistorted frames are essential to many image processing tasks. Second, it establishes a relationship be-
tween the size of objects in video versus the size of the same objects in the real world. This is important for drawing
Augmented-Reality geometry of the correct size and shape in the video.

Calibration involves the recording of a special video and consists of three easy steps. To begin, start VideoF2B and
choose Tools → Calibrate camera.. in the main menu. You will see the following window:

8.1 Obtain the Calibration Pattern

You have two choices for the calibration pattern: display it on screen or print it to paper. The recommended method
is to print. However, if you do not have access to a printer, displaying it on screen is also acceptable.

Important: To print the pattern you will need a PDF reader application, such as Adobe Acrobat, Foxit, or similar.

If you decide to print the pattern, make sure to mount it flat to a suitable piece of cardboard or poster board for easy
handling while maintaining accuracy.

Note: The absolute size of the pattern is not important. Whether you display it or print it, do not worry about its true
size. It is only important that the entire pattern is flat and visible.

8.2 Record the Video

Record the video using your camera system. The video should be fairly short; about 30-50 seconds is enough. The
pattern should be visible in its entirety throughout the video. Move and tilt the camera so that you record as many
perspectives of the pattern as possible. To see an example video, click the thumbnail under Step 2 in the calibration
window. An alternative method is to mount the camera on a tripod, then move and tilt the printed pattern in front of
the camera.

21

VideoF2B

Fig. 8.1: Camera calibration dialog.
22 Chapter 8. Camera Calibration

VideoF2B

Attention: Configure your camera with the same video settings that you will use in the field to record the flights.
This means that your choice of lens, its focal length, and video resolution all must be the same during calibration
and during field recordings. If the focal length is adjustable (also known as a “zoom lens”), then you must make
sure to set the focal length to the same value during field recordings as you did during calibration. When using the
camera of a mobile device, always orient the device in landscape mode (horizontally) and make sure you always
choose the same zoom factor and video resolution as you did during calibration. If you neglect to follow this rule,
you will get unexpected results in your Augmented-Reality videos. This rule does not apply to the frame rate of the
video.

If you chose the Display option for the pattern in Step 1, press the Esc key to return to the calibration window after
recording the video.

8.3 Process the Video

Transfer the video file to your computer. Under Step 3, browse to the file. Finally, press the Start button at the bottom
of the window. VideoF2B will begin processing the calibration video in the main window:

Fig. 8.2: Main window of VideoF2B showing camera calibration in progress.

As stated in the message window, the calibration process takes a while. The video playback will appear in slow motion,
and it will seem to “skip” and “freeze” at times, but do not fret – all is well. The calibration process is computationally
intensive. If you do want to stop the calibration at any time for any reason, just press the Esc key. Otherwise, grab a

8.3. Process the Video 23

VideoF2B

cup of coffee, relax, and wait patiently until the progress bar reaches 100%. When finished, the video will disappear
from the main window, and you will see some information about the results in the message window:

Fig. 8.3: Main window at end of camera calibration. Take note of the messages in the message window.

If the calibration fails, most likely your video is too short and/or it does not show the complete pattern from a sufficient
number of points of view. In that case, record another video while paying attention to those details.

If the calibration succeeds, VideoF2B will create a file named CamCalibration.npz and two image files in the same
folder as the calibration video. The CamCalibration.npz file is the calibration file for your camera system. Do not
lose it. You will need it for producing every Augmented-Reality video of the flights you will record with your camera.
You may also share it with others who have the same camera system as you.

For the technically inclined. . .
The two image files show a sample frame from the calibration video. The image calibresult_nocrop.png is a
full-size frame that is “undistorted”, i.e., straight lines of the pattern should appear straight in the image. To achieve
this, the calibration process transforms the original frame in such a way that empty pixels appear around the edges of
the undistorted image, giving the edges a “pincushion” look:

24 Chapter 8. Camera Calibration

VideoF2B

Fig. 8.4: Uncropped calibrated frame.

The strength of the pincushion effect depends mostly on the distortion inherent to the lens, and on the focal length.
Wide-angle action cameras typically show a stronger effect than longer lenses.

The other image file is calibresult.png. It is the same image as the “no-crop” image above, with one important
difference. It is cropped to the maximum usable area so that the empty pixels are no longer visible:

Fig. 8.5: Cropped calibrated frame.

Note that this always results in a smaller image than the full-size video frame that you see in the camera. In the above
examples, the “no-crop” image size is the original Full HD, or 1920x1080 pixels. The cropped image size is 1910x1050
pixels. So a total of 10 pixels were lost from the sides, and a total of 30 pixels from the top and bottom of the original
frame. It is important to keep this in mind when placing the camera in the field. Give yourself some room, especially
at the bottom of the frame, to account for the lost pixels. VideoF2B will “upsize” calibrated video to the size of the
original input video whenever possible, but some pixels around the border of the original video will be lost due to
calibration.

Congratulations, you are ready to record Control Line Stunt videos! The next step is field setup.

8.3. Process the Video 25

VideoF2B

26 Chapter 8. Camera Calibration

CHAPTER

NINE

LOADING A FLIGHT

To load a flight into VideoF2B for AR processing, follow these steps:

1. Choose File → Load in the main menu.

2. Click the Browse for file button of the Video source box:

Fig. 9.1: The “Load a Flight” dialog window. Specify all flight parameters here.

3. Choose the desired video on your computer and click the Open button.

27

VideoF2B

Fig. 9.2: File browsing dialog. This may look different on your computer.

4. Click the Browse for file button of the Calibration file box.

5. Choose the calibration file that you created during camera calibration.

Important: Be sure to choose the calibration file that corresponds to the camera and lens that were
used to record the video you selected above.

Note: If F2B markers are not available, but you still want to create video that corrects for camera
distortion (using your camera’s calibration file), turn on the option Skip camera location. Note that
in this case, entry of AR-related parameters is disabled and Augmented-Reality graphics will not be
drawn.

6. Enter the following AR-related parameters:

Flight radius (m)
The flight radius of the recorded flight, in meters.

Height markers: distance to center (m)
The horizontal distance from the center of the flight circle to the F2B markers, in meters.

Height markers: height above center of circle (m)
The elevation of F2B markers above the pilot’s feet at the center of the flight circle, in meters.

Important: Please use meters for the above three parameters.

7. Click the Load button or just press the Enter key.

28 Chapter 9. Loading a Flight

CHAPTER

TEN

LOCATING A FLIGHT

After you load a flight for AR processing, the AR graphics can only be drawn in video after the flight has been located.
This is done via the locating procedure described below. This procedure establishes a relationship between the real
3D world and the 2D video that was used to record it. The procedure consists of picking objects in video that are
positioned at known locations in the real world.

To locate a flight, follow these steps after loading it:

1. The video window will display the first frame of your video so that you can select F2B markers. This procedure
locates the camera in video relative to the flight circle so that AR geometry can be displayed.

Fig. 10.1: First step of camera locating: begin selecting markers.

29

VideoF2B

Follow the prompts in the middle of the status bar to select markers. Be as accurate as possible when selecting
each marker.

To select a marker, point the mouse cursor to it and click the left mouse button.

To unselect the last selected marker, click the right mouse button anywhere in the video window.

You will be prompted to select the following four items:

Circle center
Select a point on the ground in the center of the circle. If you know that the pilot is standing exactly in
the center at the start of the video, select a point at his or her feet. If the pilot is not standing in the center
of the pilot circle at the start of the video, select a point on the ground where you estimate the center of the
pilot circle to be. This can be done by reviewing the video separately in a video player. Fast-forwarding the
video to a time when the pilot is in the middle of a maneuver is the recommended method of estimating the
location of the circle center.

Front marker
Select the center of a marker on the far side of the flight circle that is nearest to the middle of the video
frame. It does not matter which marker you choose to be the front, as long as markers adjacent to it are
visible in the video frame.

Left marker
Select the center of the nearest marker to the left of the front marker on the far side of the flight circle, i.e.,
the next marker in the counterclockwise direction.

Right marker
Select the center of the nearest marker to the right of the front marker on the far side of the flight circle,
i.e., the next marker in the clockwise direction.

When you select a marker, VideoF2B draws a small green circle around the selected point. Here is an example
of all four markers after selection:

2. When you select the final marker, you will see this prompt:

If you made incorrect selections, click No. The current marker selections will be cleared, and you will
have a chance to select all of them again.

If you are satisfied with your selections, click Yes. Processing will begin.

See User Controls to learn how to control AR geometry during the processing. You may want to review information
about The World Coordinate System first.

30 Chapter 10. Locating a Flight

VideoF2B

Fig. 10.2: Camera locating in progress. Center, front, and left markers have been selected in this example.

31

VideoF2B

Fig. 10.3: Confirmation prompt at end of camera locating procedure.

32 Chapter 10. Locating a Flight

CHAPTER

ELEVEN

THE WORLD COORDINATE SYSTEM

The flight locating procedure establishes a World Coordinate System (WCS) based on the selected markers. The WCS
is a right-handed Cartesian coordinate system. VideoF2B uses the WCS to draw all AR graphics correctly in video.
The position and orientation of the WCS is as follows:

• Origin is at the center of the base. Thus, its elevation is 1.5 m above the pilot circle.

• Positive Y-axis passes through the front marker.

• Positive Z-axis points vertically upward, and passes through top of circle.

• Positive X-axis is perpendicular to both Y and Z axes, and generally points to the right in video.

TODO: replace the photo below with a field photo that shows:
– all four markers and the camera on a tripod outside the circle.

– SVG graphics that depict the WCS.

– AR graphics that depict the flight hemisphere.

33

https://en.wikipedia.org/wiki/Right-hand_rule
https://en.wikipedia.org/wiki/Cartesian_coordinate_system

VideoF2B

34 Chapter 11. The World Coordinate System

CHAPTER

TWELVE

USER CONTROLS

This chapter applies to the user controls that are available during Augmented-Reality (AR) processing.

The following user controls on the left side of the main window are enabled during AR processing:

Fig. 12.1: User controls available during AR processing.

35

VideoF2B

VideoF2B reads frames from a given video in strict sequence from beginning to end. The user interface is designed
for an efficient workflow via the keyboard alone, while some of those controls are also available in the main window,
as seen above.

12.1 Pausing/Resuming Processing

There is no fast-forward or rewind functionality. However, you can pause the processing at any time by pressing P
on the keyboard or clicking the button. While processing is paused, you can perform various manipulations of AR
geometry, taking as much time as you need. When ready to continue, press P again or click the button.

12.2 Clearing the Trace

To clear the trace behind the model aircraft, press Space. This is useful for presenting clear traces of maneuvers —
clear the trace shortly before an upcoming maneuver to present the traced maneuver clearly.

12.3 Manipulating the Flight Hemisphere

To account for the pilot’s movement in the pilot circle during a flight, use the WASD keys to move the flight hemisphere
in the world XY plane. The keys operate as follows:

W moves the hemisphere in +Y direction (forward, away from the camera).

S moves the hemisphere in -Y direction (backward, toward the camera).

A moves the hemisphere in -X direction (to the left).
D moves the hemisphere in +X direction (to the right).

Every stroke of the above keys moves the hemisphere in the commanded direction by 0.1 m.

Pressing X resets the hemisphere’s center to the origin of the World Coordinate System.

The flight radius (R) is always displayed in the bottom left corner of AR videos. Additionally, when the AR hemisphere’s
center (C) is not at the origin, its XYZ offset will be displayed next to the flight radius:

Fig. 12.2: Sphere information in AR video. All dimensions are in meters.

Tip: Compensating for the pilot’s off-center displacement

Position of the pilot along the X-axis is easy to match accurately. Position along the Y-axis is more difficult to estimate
because depth is difficult to gauge in video. Take advantage of the Reverse Wingover maneuver to assess the pilot’s
initial position. You will be able to adjust the hemisphere’s position so that the aircraft’s centerline crosses the visible
edge of the sphere, while keeping the hemisphere’s center on the pilot. As the flight proceeds, use your best judgment.

36 Chapter 12. User Controls

https://www.computerhope.com/jargon/w/wsad.htm

VideoF2B

Other maneuvers whose approaches cross the visible edge of the hemisphere above the base (entry and exit of Outside
Square Loops and entry of Overhead Eight) also help to correct for the pilot’s position along the Y-axis throughout
the flight.

To match the nominal figure to the maneuver flown by the pilot, use the arrow keys to rotate the hemisphere. The keys
operate as follows:

Left Arrow rotates the AR hemisphere counterclockwise on its vertical axis (i.e., the nominal figure
moves to the left as seen by the pilot).

Right Arrow rotates the AR hemisphere clockwise on its vertical axis (i.e., the nominal figure moves to
the right as seen by the pilot).

Every stroke of these arrow keys rotates the hemisphere in the commanded direction by 0.5°.

12.4 Displaying Nominal Figures

To toggle the display of any nominal figure, click its corresponding checkbox in the user controls. You can also use the
Down Arrow key or the button to advance to the next figure in the Stunt Pattern sequence. If no figures are selected in
the controls, the advancing function will select loops. If one figure is selected, the advance function will unselect the
current figure and select the next figure in the sequence. If the current figure is the four-leaf clover, the figure selection
will remain and the advancing function will not have any effect. If more than one figure is selected, the advancing
function will likewise have no effect.

Note: Any combination of nominal figures can be displayed, even if only for training and/or demonstration purposes.

12.5 Displaying Start/End Points

Every maneuver has a start and an end point for judging purposes, as defined by the FAI F2B Rules. To toggle the
display of start and end points on the displayed nominal figure(s), click the Draw Start/End points checkbox at any
time during AR processing:

Fig. 12.3: This controls the display of start/end points in displayed figure(s).

The start point is displayed in green , and the end point is displayed in red .

12.4. Displaying Nominal Figures 37

VideoF2B

12.6 Displaying Diagnostic Points

VideoF2B can optionally display diagnostic points. These are just visual aids for presentation. They are defined as
endpoints of the arcs that make up a figure. In simple loops, they’re at the bottom of the loop. In more complex figures,
diagnostic points help to visualize where the connections between the “straight” segments and the corners or loops of
the figure are located.

To toggle the display of diagnostic points on the displayed nominal figure(s), click the Draw Diagnostics checkbox at
any time during AR processing:

Fig. 12.4: This controls the display of diagnostic points in displayed figure(s).

Diagnostic points are displayed in alternating green and red colors per figure. For example, this is the square horizontal
eight with diagnostics displayed:

Fig. 12.5: Example: figure with diagnostics enabled.

38 Chapter 12. User Controls

VideoF2B

The start/end points are drawn on top of the diagnostic points in case both options are enabled for display.

12.6. Displaying Diagnostic Points 39

VideoF2B

40 Chapter 12. User Controls

CHAPTER

THIRTEEN

CHEATSHEET OF USER CONTROLS

Key(s) Operation
Ctrl + O Open (load) a video for processing
Ctrl + Q Quit the application
Esc Stop processing a video or a calibration
P Pause/Resume video processing
Space Clear current trace
Down Arrow Next figure
Left Arrow Rotate AR sphere counterclockwise (stunt figure rotates left wrt pilot)
Right Arrow Rotate AR sphere clockwise (stunt figure rotates right wrt pilot)
W Move AR sphere forward (away from camera)
A Move AR sphere left
S Move AR sphere backward (toward camera)
D Move AR sphere right
X Reset AR sphere center to origin
C Relocate Camera

41

VideoF2B

42 Chapter 13. Cheatsheet of User Controls

CHAPTER

FOURTEEN

GETTING HELP

When you encounter issues while using VideoF2B, you are encouraged to take advantage of the following help channels:

• GitHub: if you have an account, submit issues there directly.

• Email the developers.

• Post a topic on the StuntHangar forum in the Open Forum section.

For a list of commonly encountered issues and questions, see the FAQ page.

43

https://github.com/alsolera/VideoF2B/issues
mailto:videof2b.dev@gmail.com
https://stunthanger.com/smf/index.php

VideoF2B

44 Chapter 14. Getting help

CHAPTER

FIFTEEN

FAQ

Q: Can I record handheld videos?
A: Absolutely not! Mount your recording device to a sturdy tripod or similar. Do not move it or adjust it while
recording a flight. See Field setup for details.

Q: Why do I need markers?
A: F2B markers provide a base reference in the field for the pilot and for the judges. For VideoF2B, they also relate
the real world to camera images, so that augmented reality geometry can be drawn accurately in video. Without the
markers, augmented-reality geometry is not possible.

Q: My flying site does not have F2B markers, and installing them is not practical. Is there an alternative method
for creating AR videos that does not require markers?
A: This capability is a research & development project that is currently in progress.

Q: Can I move the camera during a flight once recording has started?
A: No. Doing so will require you to select the markers in video in the new camera location.

Q: Does the trace drawn in video follow the CG of the model aircraft?
A: Not necessarily, but it tends to be fairly close to it. The motion detector follows the centroid (geometric center) of
the silhouette of the largest moving object in video.

Q: Why are background objects tracked instead of the model aircraft?
A: VideoF2B currently does not distinguish between objects and just follows the largest moving object. If possible,
avoid having moving objects as background (e.g. a road).

Q: How accurate are the Augmented Reality graphics?
A: Field tests have proven that the augmented-reality geometry drawn in video is accurate within 10 cm throughout the
entire flight envelope.

Q: Can this system be used for computerized scoring of Stunt flights?
A: The concept of tracking the flights in three dimensions using recorded video for the purpose of automated scoring
is definitely under consideration. Some maneuvers are problematic to track accurately (takeoff, level/inverted flight,
landing), but the majority of the flight maneuvers are potential candidates.

45

https://en.wikipedia.org/wiki/Centroid

VideoF2B

46 Chapter 15. FAQ

CHAPTER

SIXTEEN

GLOSSARY

Augmented Reality
AR

An enhanced version of reality created by the use of technology to overlay digital information on an image of
something being viewed through a device. See Augmented Reality.

Base
The equator of the flight hemisphere. This lies at a height of 1.5 m above the center of the flight circle.

Field of view
FOV

The area visible through the lens of an optical instrument.

Figure
A shape, which makes up a separately recognizable complete part of a whole maneuver. For example, the first
loop of the three consecutive inside loops maneuver is referred to as a figure; but the first loop which makes the
first half of the first complete figure eight in the two consecutive overhead eight maneuver is not referred to as a
figure.

Flight circle
A horizontal circle whose radius is equal to the flight radius.

Flight hemisphere
A half-globe shape whose base is level above the ground.

Flight radius
The distance from the pilot’s chest to the centerline of the model aircraft.

Great circle
The circular intersection of a sphere and a plane passing through the sphere’s center point. See Great circle.

Horizontal
Flight along or parallel to the base.

Inverted
Condition when the model aircraft is flying in an attitude which is the reverse of upright flight (colloquially, the
model aircraft is “flying on its back”, is “flying upside-down”, or is “flying inverted”).

Lateral reference
An imaginary line drawn at right angles (90 degrees) to the horizontal and is used as a reference line when flying
and scoring the size, positioning, symmetry and the superimposition of various figures and maneuvers.

Level
At right angles to the direction aligned with the direction of the force of gravity, as materialized with a plumb
line.

47

https://en.wikipedia.org/wiki/Augmented_reality
https://en.wikipedia.org/wiki/Great_circle

VideoF2B

Manoeuvre
Maneuver

The full total of figures and segments necessary to complete the maneuver marked under a separate numbered
heading with bold type. For example, the take-off maneuver, the three consecutive inside loops maneuver, and
the single four-leaf clover maneuver, are all referred to as a single whole maneuver throughout F2B Rules.

Momentary
Momentarily

Used throughout F2B Rules in their original dictionary definition sense (that is: something that lasts only for a
very brief period of time). So, for example, the very short period during which the model aircraft is required to
be in a vertically-banked “knife-edge” attitude above the competitor’s head during the two consecutive overhead
eights maneuver is described in F2B Rules as “momentarily”.

Nominal
A dimension, shape, or size that represents the true profile of a figure or maneuver, and is used as the template
against which actual shapes and sizes of figures or maneuvers are compared.

Parallel
An imaginary line on the surface of the flight hemisphere equidistant to the equator of the flight hemisphere and
marking the latitude.

Segment
A specifically defined part of a figure (or of a whole maneuver) in which certain particular points are detailed.
For example, the first loop which makes the first half of the first complete figure eight in the two consecutive
overhead eight maneuver is referred to as a segment.

Small circle
The circular intersection of a sphere and a plane that does not pass through the sphere’s center point. See Small
circle.

Sphere
A three-dimensional surface, all points of which are equidistant from a fixed point.

Straight line
A great circle path or part thereof.

Top of circle
A point at the top of the flight hemisphere, vertically above the center of the hemisphere.

Upright
Condition when the model aircraft is flying in its “normal” upright attitude (that is: with its landing gear nearest
to the ground).

Vertical
Flight at right angles to the base, along an imaginary circle on the surface of the flight hemisphere marking the
longitude.

Wingover path
The vertical climbing and diving flight path defined as a segment of the single reverse wingover maneuver.

48 Chapter 16. Glossary

https://en.wikipedia.org/wiki/Spherical_circle
https://en.wikipedia.org/wiki/Spherical_circle

CHAPTER

SEVENTEEN

VIDEOF2B

17.1 videof2b package

17.1.1 Subpackages

videof2b.core package

Subpackages

videof2b.core.common package

Submodules

videof2b.core.common.path module

Path-related utilities.

videof2b.core.common.path.files_to_paths(file_names)
Convert a list of file names to a list of file Path objects.

Parameters
file_names (list[str]) – The list of file names to convert.

Returns
The list converted to file paths

Return type
list[Path]

videof2b.core.common.path.path_to_str(path=None)
Convert a Path object or NoneType to a string equivalent.

Parameters
path (Path | None) – The value to convert to a string

Returns
An empty string if path is None, else a string representation of the path

Return type
str

49

VideoF2B

videof2b.core.common.path.replace_params(args, kwargs, params)
Transform the specified args or kwargs

Parameters
• args (tuple) – Positional arguments

• kwargs (dict) – Keyword arguments

• params – A tuple of tuples with the position and the keyword to replace

Returns
The modified positional and keyword arguments

Return type
tuple[tuple, dict]

Usage: Given a method with the following signature, assume we want to apply the str function to arg2: def
method(arg1=None, arg2=None, arg3=None)

Since arg2 can be specified positionally as the second argument (1 with a zero index) or as a keyword, we would
call this function as follows: `replace_params(args, kwargs, ((1, ‘arg2’, str),))

videof2b.core.common.path.str_to_path(string)
Convert a str object to a Path or NoneType.

This is especially useful because constructing a Path object with an empty string causes the Path object to point
to the current working directory, which is not desirable.

Parameters
string (str) – The string to convert

Returns
None if string is empty, or a Path object representation of string

Return type
Path | None

videof2b.core.common.settings module

Module for handling persistent settings.

class videof2b.core.common.settings.Settings(*args, **kwargs)
Bases: QSettings

Simple wrapper around QSettings. Contains core definitions of all known keys and their default values. Does
not contain a strategy for versioning of settings. Handles lookup of default values in the most basic manner.

staticMetaObject = PySide6.QtCore.QMetaObject("Settings" inherits "QSettings":)

value(key)
Return the value for the given key. The key must exist in Settings.__defaults__. If value not found, return
the value from Settings.__defaults__

50 Chapter 17. videof2b

VideoF2B

videof2b.core.common.singleton module

Contains the Singleton class definition.

class videof2b.core.common.singleton.Singleton

Bases: type

Implementation of a Singleton metaclass.

videof2b.core.common.store module

This module contains objects that enable persistence of custom data.

class videof2b.core.common.store.Store(*args, **kwargs)
Bases: object

An object store. This is a singleton that provides access to object references that are shared within a process.

add(key, item)
Add an item to the store.

classmethod create()

The constructor for the Store.

get(key)
Get the specified object from the store.

remove(key)
Remove an item from the store.

class videof2b.core.common.store.StoreProperties

Bases: object

Adds shared components to classes for use at run time.

property application

Dynamically-added application object.

property settings

Dynamically-added settings object.

Module contents

Common definitions and constants for VideoF2B.

class videof2b.core.common.FigureTypes(value)
Bases: Enum

All F2B figures in sequence.

FOUR_LEAF_CLOVER = 14

HORIZONTAL_EIGHTS = 9

HORIZONTAL_SQUARE_EIGHTS = 10

HOURGLASS = 12

17.1. videof2b package 51

VideoF2B

INSIDE_LOOPS = 3

INSIDE_SQUARE_LOOPS = 6

INSIDE_TRIANGULAR_LOOPS = 8

INVERTED_FLIGHT = 4

LANDING = 15

OUTSIDE_LOOPS = 5

OUTSIDE_SQUARE_LOOPS = 7

OVERHEAD_EIGHTS = 13

REVERSE_WINGOVER = 2

TAKEOFF = 1

VERTICAL_EIGHTS = 11

class videof2b.core.common.SphereManipulations(value)
Bases: Enum

Possible manipulations of the AR sphere during processing.

MOVE_EAST = 4

MOVE_NORTH = 5

MOVE_SOUTH = 6

MOVE_WEST = 3

RESET_CENTER = 0

ROTATE_CCW = 1

ROTATE_CW = 2

videof2b.core.common.get_app_metadata()

Get basic app information. Returns (name, version) as a tuple of strings.

Return type
Tuple

videof2b.core.common.get_bundle_dir()

Return the path of the bundle directory. When frozen as a one-file app, this is the _MEI### dir in temp. When
frozen as a one-dir app, this is that dir. When running as a script, this is the project’s root dir.

videof2b.core.common.get_frozen_path(path_when_frozen, path_when_non_frozen)
Return one of the given paths based on status of sys.frozen.

videof2b.core.common.get_lib_versions()

Get User-friendly names and versions of libraries that we care about for bug reports. This is just a sub-list of
install_requires items in our setup.cfg.

52 Chapter 17. videof2b

VideoF2B

videof2b.core.common.is_linux()

Returns True if running on a Linux OS.

Return type
bool

Returns
True if running on a Linux OS.

videof2b.core.common.is_win()

Returns True if running on a Windows OS.

Return type
bool

Returns
True if running on a Windows OS.

videof2b.core.common.launch_document(path)
Open the specified document using the default application.

Return type
None

Submodules

videof2b.core.calibration module

Module for calibrating cameras.

class videof2b.core.calibration.CalibratorReturnCodes(value)
Bases: IntEnum

Definition of the return codes from CameraCalibrator’s processing loop.

EXCEPTION_OCCURRED = -2

INSUFFICIENT_VALID_FRAMES = 3

NORMAL = 0

NO_VALID_FRAMES = 2

UNDEFINED = -1

USER_CANCELED = 1

class videof2b.core.calibration.CameraCalibrator(path, is_fisheye=False)
Bases: QObject

Calibrates a camera.

error_occurred

finished

new_frame_available

progress_updated

17.1. videof2b package 53

VideoF2B

run()

Calibrate the camera using the chessboard pattern.

staticMetaObject = PySide6.QtCore.QMetaObject("CameraCalibrator" inherits "QObject":
Methods: #5 type=Signal, signature=new_frame_available(QImage), parameters=QImage
#6 type=Signal, signature=progress_updated(PyObject), parameters=PyObject #7
type=Signal, signature=finished(int), parameters=int #8 type=Signal,
signature=error_occurred(QString,QString), parameters=QString, QString)

stop()

Cancel the calibration procedure.

videof2b.core.camera module

This module contains representations of cameras.

class videof2b.core.camera.CalCamera(frame_size, flight)
Bases: QObject

Represents a real-world camera whose intrinsic and extrinsic optical properties are known.

load_calibration(path)
Load a camera calibration from the specified path.

locate(flight)
Locate a given Flight instance using this camera.

Return type
bool

staticMetaObject = PySide6.QtCore.QMetaObject("CalCamera" inherits "QObject":)

undistort(img)
Undistort a given image according to the camera’s calibration.

videof2b.core.camera_director module

Calculator for placing a camera in the field.

class videof2b.core.camera_director.CamDirector

Bases: object

The core calculator of cam placement geometry.

property A: float

Maximum vertical viewing angle of the camera, in degrees.

property C: float

Signed camera height relative to flight equator. Up is positive.

DEFAULT_A = 71.75

DEFAULT_C = -1.0

DEFAULT_G = -1.5

54 Chapter 17. videof2b

VideoF2B

DEFAULT_R = 21.0

property G: float

Signed ground level relative to flight equator. Up is positive.

property R: float

Sphere radius. Must be positive and nonzero.

property cam_distance_limits: Iterable

The limits (min, max) of camera distance from flight center.

property cam_tangent_elev_limits: Iterable

The limits (min, max) of the elevation of the tangent point from camera to sphere at the respective
cam_distance_limits. The point’s elevation is measured from flight center in degrees.

property cam_view_limits: Iterable

The limits (min, max) of camera vertical viewing angle, in degrees, at the respective cam_distance_limits.

solve()

For the current state, solve for the following:
d_min and d_max such that alpha <= max_alpha

Subject to the constraint:
• maximum vertical view angle must include the 45-degree latitude and the center field marker on

the ground.

videof2b.core.detection module

This module performs motion detection in video.

class videof2b.core.detection.Detector(maxlen, scale)
Bases: object

The primary motion detector in VideoF2B.

clear()

Clear the currently detected track.

process(img)
Detect a moving object in a given image frame.

videof2b.core.drawing module

Module for drawing flight track and Augmented Reality in video.

class videof2b.core.drawing.Colors

Bases: object

Shortcuts for OpenCV-compatible colors.

BLACK = (0, 0, 0)

BLUE = (255, 0, 0)

CYAN = (255, 255, 0)

17.1. videof2b package 55

VideoF2B

DarkGreen = (0, 204, 0)

GRAY20 = (50, 50, 50)

GREEN = (0, 255, 0)

MAGENTA = (255, 0, 255)

RED = (0, 0, 255)

WHITE = (255, 255, 255)

YELLOW = (0, 255, 255)

class videof2b.core.drawing.DashedPolyline(obj_pts, **kwargs)
Bases: Plot

Defines a polyline that is drawn dashed.

draw(img, key, **kwargs)
Draw this polyline using its attributes.

class videof2b.core.drawing.Drawing(detector, **kwargs)
Bases: object

Container that performs all the drawing of AR sphere, track, figures, etc., in any given image frame.

DEFAULT_N = 100

draw(img)
Draw all relevant geometry in the given image frame.

property draw_diags

Controls the drawing of diagnostics.

property draw_endpts

Controls the drawing of maneuver endpoints.

locate(cam, flight=None, **kwargs)
Locate a new Flight or relocate an existing one using the given camera.

Return type
None

move_center_x(delta)
Move sphere center by delta along world X direction, in meters.

move_center_y(delta)
Move sphere center by delta along world Y direction, in meters.

reset_center()

Reset sphere center to default.

set_azimuth(azimuth)
Set the aximuth of the AR sphere, in degrees.

class videof2b.core.drawing.DummyScene

Bases: object

Placeholder object for an empty scene.

56 Chapter 17. videof2b

VideoF2B

draw(*args, **kwargs)
No-op method.

class videof2b.core.drawing.EdgePolyline(R, cam_pos, **kwargs)
Bases: Polyline

Defines a special polyline that represents the visible edge of the sphere. This polyline is aware of the camera’s
position.

class videof2b.core.drawing.ManeuverPoint(point, size, color)
Bases: object

Represents either endpoint of a maneuver (start or end).

class videof2b.core.drawing.Plot(obj_pts, **kwargs)
Bases: object

Base class for plotting primitives. * Call draw() to draw the Plot instance in your image. kwargs:

size: the line thickness or point radius.

color: the color of the primitives in this Plot.

is_fixed: bool indicating whether this Plot is fixed in object space or not.
If True, world transforms do not affect the object coordinates. If False (default), then world transforms will
rotate, scale, and translate the object coordinates according to the rules in the _calculate() method.

draw(key, **kwargs)
Call this method from derived classes before drawing the image points.

class videof2b.core.drawing.Polyline(obj_pts, **kwargs)
Bases: Plot

Defines a polyline.

draw(img, key, **kwargs)
Draw this polyline using its attributes.

class videof2b.core.drawing.Scatter(obj_pts, **kwargs)
Bases: Plot

Defines a collection of scattered points.

draw(img, key, **kwargs)
Draw scatter points as solid-filled circles using their attributes.

class videof2b.core.drawing.Scene(*items)
Bases: object

A scene consists of a collection of Plot-like objects.

add(item)
Add an item to this scene.

add_diag(item)
Add a diagnostic item to this scene.

add_endpt(item)
Add an endpoint item to this scene.

17.1. videof2b package 57

VideoF2B

property diags_on

Boolean flag that controls drawing of diagnostics.

draw(img, key, **kwargs)
Draw this scene in the given image.

property endpts_on

Boolean flag that controls drawing of maneuver endpoints.

videof2b.core.figure_tracker module

F2B Figure tracker.

class videof2b.core.figure_tracker.FigureTracker(callback=<function FigureTracker.<lambda>>,
**kwargs)

Bases: object

Container that tracks F2B figures. May be used for fitting the actual flight path to the nominal figure to determine
a score.

All FAI figures, per “F2, Annex 4J – F2B Manoeuvre Diagrams” for reference.

Not all may be easy to track:

• 4.J.1 Take-off (Rule 4.2.15.3)

• 4.J.2 Reverse wingover (Rule 4.2.15.4)

• 4.J.3 Three consecutive inside loops (Rule 4.2.15.5)

• 4.J.4 Two consecutive laps of inverted level flight (Rule 4.2.15.6)

• 4.J.5 Three consecutive outside loops (Rule 4.2.15.7)

• 4.J.6 Two consecutive inside square loops (Rule 4.2.15.8)

• 4.J.7 Two consecutive outside square loops (Rule 4.2.15.9)

• 4.J.8 Two consecutive inside triangular loops (Rule 4.2.15.10)

• 4.J.9 Two consecutive horizontal eight (Rule 4.2.15.11)

• 4.J.10 Two consecutive horizontal square eight (Rule 4.2.15.12)

• 4.J.11 Two consecutive vertical eight (Rule 4.2.15.13)

• 4.J.12 Hourglass (Rule 4.2.15.14)

• 4.J.13 Two consecutive overhead eight (Rule 4.2.15.15)

• 4.J.14 Four-leaf clover manoeuvre (Rule 4.2.15.16)

• 4.J.15 Landing manoeuvre (Rule 4.2.15.17)

FIGURE_MAP = {0: FigureTypes.INSIDE_LOOPS}

add_actual_point(idx, point)
Add a measured (actual) point to the currently tracked figure at a given index. If no figure is currently being
tracked, this call has no effect.

export(path)
Export all tracked figures as numpy arrays to the specified file. Arrays are labeled “fig0”, “fig1”, etc.

58 Chapter 17. videof2b

VideoF2B

finish_all()

Clean-up method. Finish current figure, if any figure is in progress.

finish_figure()

Finish trfig_type_constructorhe currently tracked figure.

start_figure()

Start tracking a new figure.

exception videof2b.core.figure_tracker.UserError

Bases: Exception

Class for exception that occur during Figure tracking due to user errors.

videof2b.core.figures module

Geometric definitions for F2B figures.

class videof2b.core.figures.Figure(R=None, actuals=None, **kwargs)
Bases: object

Base class for all F2B figures.

static create(which_figure, R=None, actuals=None, **kwargs)
Factory method for creating a given Figure on a sphere of radius R with specified actual path points.

fit()

Perform best fit of actual points against the nominals of the figure.

get_nom_point(a, b, c, *t)
Returns the nominal point at a given 0.0 < t < 1.0 using the figure’s parameters.

u

Suggested count of nominal points for a reasonably smooth-looking figure. Override in subclasses as
needed. This is primarily used for drawing.

class videof2b.core.figures.FigureDiagnostics(enabled=False)
Bases: object

Contains the diagnostic settings in a figure.

class videof2b.core.figures.InsideLoops(R=None, actuals=None, **kwargs)
Bases: Figure

Represents three consecutive inside loops per F2B Rule 4.2.15.5 and Diagram 4.J.3 in the Annex. kwargs:

Parameters
enable_diags – enables diagnostic output and plotting of various behind-the-scenes stuff.

fit()

Fit actual flight path to this Figure’s nominal path.

videof2b.core.figures.find_min_gss(f , a, b, eps=0.0001)
Find Minimum by Golden Section Search Method Returns the value of x that minimizes the function f(x) on
interval [a, b]

videof2b.core.figures.test()

Test cases.

17.1. videof2b package 59

VideoF2B

videof2b.core.flight module

Defines a recorded flight.

class videof2b.core.flight.Flight(vid_path, is_live=False, cal_path=None, **kwargs)
Bases: QObject

Contains information about a flight to be processed.

add_locator_point(point)
Add a potential locator point.

Return type
None

clear_locator_points()

Clear all locator points.

locator_points_changed

locator_points_defined

obj_point_names = ('circle center', 'front marker', 'left marker', 'right marker')

on_locator_points_changed()

Signals that locator points changed, and the new instruction message.

pop_locator_point()

Remove the last added locator point, if it exists.

Return type
None

restart()

Restart this flight’s video stream.

staticMetaObject = PySide6.QtCore.QMetaObject("Flight" inherits "QObject": Methods:
#5 type=Signal, signature=locator_points_changed(PyObject,QString),
parameters=PyObject, QString #6 type=Signal, signature=locator_points_defined())

videof2b.core.geometry module

General geometry related to F2B figures.

exception videof2b.core.geometry.ArgumentError

Bases: Exception

Thrown when the provided combination of arguments is invalid.

class videof2b.core.geometry.Fillet(R, r, psi, is_degrees=False)
Bases: object

Represents a spherical fillet.

On a sphere of radius R, a fillet is defined as an arc of a small circle of radius r between two great arcs of the
sphere with angle psi (𝜓) between the arcs such that the small circle is tangent to both arcs. The constructor of
this class tries to calculate the parameters of the fillet via the calculate() method.

Parameters

60 Chapter 17. videof2b

VideoF2B

• R (float) – radius of the sphere.

• r (float) – radius of the fillet.

• psi (float) – angle between two great arcs that define the fillet.

• is_degrees (Optional[bool], default: False) – If True, psi is given in degrees, other-
wise it is given in radians.

calculate()

Calculate the fillet as follows:

Given two intersecting planes with angle 𝜓 between them, a cone of slant height𝑅 and base radius 𝑟 whose
apex rests on the intersection line of the planes will rest tangent to both planes when the cone’s axis makes
an angle 𝜃 with the intersection line of the planes in the bisecting plane.

If we set up a coordinate system on the cone’s base such that: :rtype: None

• the origin is at the cone’s apex;

• the −𝑧 axis is along the cone’s axis toward the cone’s base; and

• the +𝑥 axis is toward the intersection line,

then the coordinates of the points of tangency between the cone and the planes are (𝑥𝑝, 𝑦𝑝,−𝑑) and
(𝑥𝑝,−𝑦𝑝,−𝑑).

Let 𝛽 be the central angle of the arc along the cone’s base that joins the two tangency points on the side of
the intersection (the shorter of the two possible arcs).

Perform the following:

• Ensure that tangency is possible. This requires that

2𝛼 6 𝜓 6 𝜋

where 𝛼 = arcsin
(︁ 𝑟
𝑅

)︁
is the half-angle of the cone’s apex.

If this condition fails, the instance attribute is_valid is set to False and this method returns early.

• Find angle 𝜃 (Gorjanc solution). Store it in the instance attribute theta.

• Find 𝑥𝑝, 𝑦𝑝, and 𝑑. Store them in instance attributes x_p, y_p, and d, respectively.

• Find angle 𝛽. Store it in the instance attribute beta.

• Set is_valid to True and return.

See also:
method get_fillet_theta().

static get_fillet_theta(R, r, psi)
Calculate the angle 𝜃 between cone axis and intersection line of the planes that are tangent to a Fillet.

Implements the Gorjanc solution. Values of 𝑥𝑝 and 𝑦𝑝 follow from this as well.

Parameters
• R (float) – radius of the sphere on which the fillet is defined.

• r (float) – radius of the fillet, which is also equal to the base radius of the fillet’s cone.

• psi (float) – angle between the planes that are tangent to the fillet’s cone.

17.1. videof2b package 61

https://www.grad.hr/geomteh3d/Plohe/plohe5_eng.html

VideoF2B

Return type
float

Note: This method is provided as a static method for optimizer use in addition to use by Fillet here.

See also:
The calculate() method.

videof2b.core.geometry.angle(a, b)
Calculate the angle between two vectors in radians.

Parameters
• a (Union[_SupportsArray[dtype], _NestedSequence[_SupportsArray[dtype]],
bool, int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float,
complex, str, bytes]]]) – any vector in 2D or 3D.

• b (Union[_SupportsArray[dtype], _NestedSequence[_SupportsArray[dtype]],
bool, int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float,
complex, str, bytes]]]) – any vector in 2D or 3D.

Return type
float

Returns
the angle between a and b in radians.

videof2b.core.geometry.calc_equilateral_sigma(height=0.7853981633974483)
Solve for the side of an equilateral spherical triangle whose height is given.

This is the companion to the get_equilateral_height() function.

Parameters
height (Optional[float], default: 0.7853981633974483) – height of the equilateral spher-
ical triangle, in radians. Defaults to

𝜋

4
.

Return type
float

Returns
side angle 𝜎, in radians.

videof2b.core.geometry.calc_tri_loop_params(R, r, target_elev=0.7853981633974483)
Calculate the basic parameters of a triangular loop figure on a sphere.

Given an equilateral spherical triangle on the surface of a sphere of radius R such that the top of a corner turn of
radius r is located at target_elev on the sphere, calculate:

• The central angle 𝜎 of the side of the triangle,

• The angle 𝜑 between adjacent sides of the triangle.

Parameters
• R (float) – radius of the sphere.

• r (float) – radius of the loop’s corner turns.

• target_elev (Optional[float], default: 0.7853981633974483) – elevation of the high-
est point in the top turn. Defaults to

𝜋

4
.

62 Chapter 17. videof2b

VideoF2B

Return type
Tuple[float]

Returns
sigma, phi

All angles are in radians.

videof2b.core.geometry.cartesian_to_spherical(p)
Convert a point from Cartesian coordinates to elevation-based spherical coordinates.

Parameters
p (Union[_SupportsArray[dtype], _NestedSequence[_SupportsArray[dtype]], bool,
int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex,
str, bytes]]]) – an array or sequence representing a point (x, y, z) in Cartesian space.

Return type
ndarray

Returns
an array containing (r, theta, phi) where

• r = radius,

• theta = elevation angle 𝜃,

• phi = azimuth angle 𝜑.

Seealso
the inverse conversion function is spherical_to_cartesian().

All angles are in radians.

videof2b.core.geometry.get_arc(r, alpha, rho=100)
Create an array of 3D points that represent a circular arc.

Return 3D points for an arc of radius r and included angle alpha with point density rho, where rho is the
number of points per 2𝜋. Arc center is (0, 0, 0). The arc lies in the 𝑥𝑦 plane. The arc starts at zero angle,
i.e., at (r, 0, 0), and proceeds counterclockwise until it ends at alpha. Angle measurements are in radians.
The endpoint is always included.

Parameters
• r (float) – radius of the arc.

• alpha (float) – included angle of the arc in radians.

• rho (Optional[int], default: 100) – angular density of generated points. Defaults to 100.

Return type
ndarray

Returns
(N, 3) array of points, where N >= 3 and is proportional to alpha and rho.

Warning: The meaning of the rho parameter may change in the future from angular density to circumfer-
ential (linear) density to provide more consistent point spacing on arcs of different radii in the same scene.

17.1. videof2b package 63

VideoF2B

videof2b.core.geometry.get_cone_alpha(R, r)
Calculates the half-aperture of a cone with slant height R and base radius r.

Parameters
• R (float) – slant height of cone.

• r (float) – base radius of cone.

Return type
float

Returns
angle 𝛼 in radians.

videof2b.core.geometry.get_cone_d(R, r)
Perpendicular height of a cone with slant height R and base radius r.

Parameters
• R (float) – slant height of cone.

• r (float) – base radius of cone.

Raises
ValueError if R < r

Return type
float

Returns
height d of the cone.

videof2b.core.geometry.get_cone_delta(alpha, theta=None, beta=None)
Calculate the properties of a cone rotated from the flight base to a certain elevation.

Consider a base cone whose axis lies in the 𝑥𝑦 plane, and whose ruled surface contains the 𝑦 axis. Rotate this
cone around the 𝑥 axis by an angle 𝛽 such that the elevation of the cone’s axis is at angle 𝜃. This result is
important because it preserves the cone’s tangency point with the 𝑦𝑧 plane after the rotation. In the cone’s base
plane, a line segment from the cone axis to this point of tangency lies in the 𝑥𝑦 plane when the cone is unrotated
(the “base” cone). After rotation of the cone by 𝛽, this same line segment is no longer parallel to the 𝑥𝑦 plane.
Effectively, it has been rotated around the cone’s axis by an angle that we hereby call 𝛿. The goal is to calculate
𝛿 and one of the other angles such that the caller has all three angles 𝛿, 𝜃, and 𝛽 at its disposal.

Parameters
• alpha (float) – the cone’s half-aperture, in radians. This is required.

• theta (Optional[float], default: None) – the elevation of the cone’s axis, in radians.

• beta (Optional[float], default: None) – the rotation of the cone around the 𝑥 axis from
the base, in radians.

Raises
ArgumentError – when theta and beta arguments are supplied inconsistently, i.e., when both
are given or neither is given.

Return type
Tuple[float]

Returns
angle 𝛿 and one of the missing angles 𝜃 or 𝛽. Two mutually exclusive cases are possible:

64 Chapter 17. videof2b

VideoF2B

• theta is known (as in top corners of square loops)
–> return (delta, beta)

• beta is known (as in clover loops).
–> return (delta, theta)

videof2b.core.geometry.get_equilateral_height(sigma)
Calculate the height of an equilateral spherical triangle as a function of its side angle 𝜎. Takes advantage of the
cosine rule in spherical trigonometry.

This is the companion to the calc_equilateral_sigma() function.

Parameters
sigma (float) – the side angle 𝜎 of the spherical triangle.

Return type
float

Returns
the height of the equilateral spherical triangle in radians.

videof2b.core.geometry.get_equilateral_phi(sigma)
Calculate the angle between sides of an equilateral spherical triangle as a function of side angle sigma. See the
derivation here.

Parameters
sigma (float) – the side angle 𝜎 of the spherical triangle.

Return type
float

Returns
the angle 𝜑 between the sides of the equilateral spherical triangle.

videof2b.core.geometry.spherical_to_cartesian(p)
Convert a point from elevation-based spherical coordinates to Cartesian coordinates.

Parameters
p (Union[_SupportsArray[dtype], _NestedSequence[_SupportsArray[dtype]], bool,
int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex,
str, bytes]]]) – an array or sequence like (r, theta, phi) where

• r = radius,

• theta = elevation angle 𝜃,

• phi = azimuth angle 𝜑.

Return type
ndarray

Returns
an array containing (x, y, z).

Seealso
the inverse conversion function is cartesian_to_spherical().

All angles are in radians.

17.1. videof2b package 65

https://math.stackexchange.com/a/3139032/10521
https://www.av8n.com/physics/spherical-triangle.htm

VideoF2B

videof2b.core.imaging module

Imaging functions.

videof2b.core.imaging.cv_img_to_qimg(cv_img)
Convert a cv2 image to a QImage for display in QPixmap objects.

Return type
QImage

videof2b.core.processor module

The main flight processor in VideoF2B.

class videof2b.core.processor.ProcessorReturnCodes(value)
Bases: IntEnum

Definition of the return codes from VideoProcessor’s processing loop.

EXCEPTION_OCCURRED = -2

NORMAL = 0

POSE_ESTIMATION_FAILED = 2

TOO_MANY_EMPTY_FRAMES = 3

UNDEFINED = -1

USER_CANCELED = 1

class videof2b.core.processor.ProcessorSettings

Bases: object

Stores persistable user settings.

im_width = 960

live_videos = PosixPath('../VideoF2B_videos')

max_track_time = 15

perform_3d_tracking = False

sphere_rot_delta = 0.5

sphere_xy_delta = 0.1

class videof2b.core.processor.VideoProcessor

Bases: QObject, StoreProperties

Main video processor. Handles processing of a video input from start to finish.

add_locator_point(point)
Add a potential locator point.

ar_geometry_available

66 Chapter 17. videof2b

VideoF2B

clear_track()

Clear the aircraft’s existing flight track.

error_occurred

finished

load_flight(flight)
Load a Flight and prepare for processing.

Parameters
flight (Flight) – a properly populated Flight instance.

Return type
None

locating_started

locator_points_changed

locator_points_defined

manipulate_sphere(command)
Manipulate the AR sphere via the specified command.

Return type
None

mark_figure(is_start)
Mark the start/end of a tracked figure.

Parameters
is_start (bool) – True to mark the start of the figure, False to mark the end.

Return type
None

new_frame_available

on_locator_points_changed(points, msg)
Handles changes in locator points during the camera locating procedure.

on_locator_points_defined()

Locator points are completely defined. Let the world know.

pause_resume()

Pause/Resume processing at the current frame. Allows the following functionality with immediate feedback
while paused: * To quit processing. * To clear the track. * To manipulate sphere rotation and movement.

paused

pop_locator_point(_)
Remove the last locator point, if one exists.

progress_updated

relocate()

Relocate the flight.

17.1. videof2b package 67

VideoF2B

run()

Run the processor.

staticMetaObject = PySide6.QtCore.QMetaObject("VideoProcessor" inherits "QObject":
Methods: #5 type=Signal, signature=locating_started() #6 type=Signal,
signature=locator_points_changed(PyObject,QString), parameters=PyObject, QString #7
type=Signal, signature=locator_points_defined() #8 type=Signal,
signature=ar_geometry_available(bool), parameters=bool #9 type=Signal,
signature=new_frame_available(QImage), parameters=QImage #10 type=Signal,
signature=progress_updated(PyObject), parameters=PyObject #11 type=Signal,
signature=finished(int), parameters=int #12 type=Signal, signature=track_cleared()
#13 type=Signal, signature=paused(bool), parameters=bool #14 type=Signal,
signature=error_occurred(QString,QString), parameters=QString, QString)

stop()

Respond to a “nice” request to stop our processing loop.

stop_locating()

Cancel the flight locating procedure.

track_cleared

update_figure_diags(val)
Update figure diags state in the drawing.

Return type
None

update_figure_state(figure_type, val)
Update figure state in the drawing.

Return type
None

update_maneuver_endpts(val)
Update maneuver endpoints in the drawing.

Return type
None

videof2b.core.projection module

Project image points onto world sphere.

videof2b.core.projection.project_image_point_to_sphere(frame, cam, radius, center, img_point,
data_writer)

Project image point to world sphere given a calibrated camera and frame.

Parameters
• frame – the image frame of interest.

• cam – instance of CalCamera.

• radius – radius of sphere.

• center – XYZ location of sphere center wrt world pose estimation.

• img_point – the image point that we wish to project onto the sphere.

68 Chapter 17. videof2b

VideoF2B

• data_writer – a handle to a file-like object.

videof2b.core.projection.project_sphere_points_to_image(cam, world_pts, frame=None)
Project the given sphere points to image space.

Module contents

Core modules of VideoF2B application.

videof2b.ui package

Submodules

videof2b.ui.about_window module

The dialog window for the “about” information.

class videof2b.ui.about_window.AboutDialog(parent)
Bases: QDialog

About window.

setup_ui()

Designs the UI.

staticMetaObject = PySide6.QtCore.QMetaObject("AboutDialog" inherits "QDialog":)

videof2b.ui.camera_cal_dialog module

The dialog window for camera calibration.

class videof2b.ui.camera_cal_dialog.CameraCalibrationDialog(parent)
Bases: QDialog, StoreProperties

Camera calibration UI.

on_doc_open()

Open the calibration pattern PDF file.

on_fisheye_changed(state)
Update fisheye flag when checkbox state changes.

on_image_display()

Show a lightweight window in full screen with the calibration pattern. Esc key closes this window by
default.

on_path_changed(new_path)
Update UI when the calibration path changes.

setup_ui()

Designs the UI.

staticMetaObject = PySide6.QtCore.QMetaObject("CameraCalibrationDialog" inherits
"QDialog":)

17.1. videof2b package 69

VideoF2B

videof2b.ui.camera_director_dialog module

Interactive tool for placing a camera in the field.

class videof2b.ui.camera_director_dialog.CamDirectorDialog(parent)
Bases: QDialog

Interactive camera placement aid.

on_new_solution(_)
Update results view when a new solution is available.

setup_model()

Create the models.

setup_ui()

Create the UI.

staticMetaObject = PySide6.QtCore.QMetaObject("CamDirectorDialog" inherits
"QDialog":)

class videof2b.ui.camera_director_dialog.CamDirectorInputsModel(biz_obj, parent=None)
Bases: QAbstractListModel

Model that represents the cam director’s inputs.

data(index, role=Ellipsis)

Return type
Any

flags(index)

Return type
~qtpy.QtCore.

headerData(section, orientation, role=Ellipsis)

Return type
Any

rowCount(parent=Ellipsis)

Return type
int

setData(index, value, role=Ellipsis)

Return type
bool

staticMetaObject = PySide6.QtCore.QMetaObject("CamDirectorInputsModel" inherits
"QAbstractListModel":)

class videof2b.ui.camera_director_dialog.CamDirectorResultsModel(biz_obj, parent=None)
Bases: QAbstractTableModel

Model that represents the cam director’s results.

70 Chapter 17. videof2b

VideoF2B

columnCount(parent=Ellipsis)

Return type
int

data(index, role=Ellipsis)

Return type
Any

flags(index)

Return type
~qtpy.QtCore.

headerData(section, orientation, role=Ellipsis)

Return type
Any

rowCount(parent=Ellipsis)

Return type
int

staticMetaObject = PySide6.QtCore.QMetaObject("CamDirectorResultsModel" inherits
"QAbstractTableModel":)

videof2b.ui.exception_dialog module

The exception dialog form.

class videof2b.ui.exception_dialog.ExceptionDialog(exc_msg)
Bases: QDialog, StoreProperties

User-friendly exception dialog.

exec()

Show the dialog.

on_attach_file_button_clicked()

Attach files to the bug report e-mail.

on_description_updated()

Update the minimum number of characters needed in the description.

on_save_report_button_clicked()

Save exception log and system information to a file.

setup_ui()

Set up the UI.

staticMetaObject = PySide6.QtCore.QMetaObject("ExceptionDialog" inherits "QDialog":
)

17.1. videof2b package 71

VideoF2B

videof2b.ui.icons module

Provides icons for the VideoF2B application.

class videof2b.ui.icons.MyIcons(*args, **kwargs)
Bases: object

Provide application-wide icons.

videof2b.ui.load_flight_dialog module

The dialog that loads the input video.

class videof2b.ui.load_flight_dialog.LoadFlightDialog(parent)
Bases: QDialog, StoreProperties

The dialog window that collects user inputs for a Flight instance.

accept()

Create a Flight instance if all inputs are valid. Store the instance as our flight attribute.

Return type
None

on_skip_locate_changed()

Enable/disable the measurement widgets when the “skip locate” checkbox changes.

setup_ui()

Lay out the UI elements

staticMetaObject = PySide6.QtCore.QMetaObject("LoadFlightDialog" inherits "QDialog":
)

videof2b.ui.main_window module

The main GUI window of VideoF2B application.

class videof2b.ui.main_window.MainWindow

Bases: QMainWindow, UIMainWindow, StoreProperties

The main UI window of the VideoF2B application.

clear_track

closeEvent(event)
Overridden to handle the closing of the main window in a safe manner. Handles all exit/close/quit requests
here, ensuring all threads are stopped before we close.

figure_diags_changed

figure_mark

figure_state_changed

load_settings()

Load the settings of MainWindow.

72 Chapter 17. videof2b

VideoF2B

locating_completed

maneuver_endpts_changed

manipulate_sphere

on_ar_geometry_available(is_available)
Update UI controls based on availability of AR geometry.

on_cal_finished(retcode)
Handle return codes and any possible exceptions that are reported by CameraCalibrator when its processing
loop finishes. Update the UI as appropriate.

on_cal_thread_finished()

Handle cleanup when the calibrator thread finishes.

on_calibrate_cam()

Calibrate a camera via a specified video file.

on_chk_diag_changed()

Tell the processor to toggle the drawn state of figure diagnostics.

on_chk_endpts_changed()

Tell the processor to toggle the drawn state of maneuver start/end points.

on_chk_figure_changed()

Tell the processor to toggle the drawn state of a figure.

on_clear_track()

Clear the aircraft’s existing flight track.

on_figure_end()

Mark the end of a figure in 3D.

on_figure_start()

Mark the start of a figure in 3D.

on_help_about()

Display About window.

on_load_flight()

Loads a flight via LoadFlightDialog and starts processing it.

on_loc_pts_changed(points, msg)
Echoes changes in the VideoProcessor’s locator points and updates the instruction message.

on_loc_pts_defined()

Present the user with a confirm/redefine choice via messagebox.

on_locating_started()

Prepare UI for the camera locating procedure.

on_move_east()

Move AR sphere East.

on_move_north()

Move AR sphere North.

17.1. videof2b package 73

VideoF2B

on_move_reset()

Reset AR sphere’s center to world origin.

on_move_south()

Move AR sphere South.

on_move_west()

Move AR sphere West.

on_next_figure()

Advance the current figure checkbox to next figure if appropriate.

Behavior: If multiple figures are checked, do nothing. If the last figure is checked, do nothing. If no figures
are checked, check the first one. In all other cases, uncheck the current figure and check the next one.

on_pause_resume()

Pause/resume processing at the current frame.

on_paused_resumed(is_paused)
Slot that responds to VideoProcessor’s signal.

on_place_cam()

Open the camera placement dialog.

on_proc_finished(retcode)
Handle return codes and any possible exceptions that are reported by VideoProcessor when its processing
loop finishes. Also update the UI as appropriate.

on_proc_starting()

Handle required preparations when the processing thread starts.

on_proc_thread_finished()

Handle cleanup when the processing thread finishes.

on_progress_updated(data)
Display video processing progress.

on_relocate_cam()

Relocate the camera.

on_restart_flight()

Reload the current flight and restart it.

on_rotate_ccw()

Rotate AR sphere CCW.

on_rotate_cw()

Rotate AR sphere CW.

on_stop_proc()

Request to stop the video processor.

on_track_cleared()

Slot that responds to the processor’s signal.

pause_resume

74 Chapter 17. videof2b

VideoF2B

relocate_cam

save_settings()

Save the settings of MainWindow.

start_cal_thread()

Starts the calibrator on a worker thread.

start_proc_thread()

Starts the video processor on a worker thread.

staticMetaObject = PySide6.QtCore.QMetaObject("MainWindow" inherits "QMainWindow":
Methods: #40 type=Signal, signature=stop_processor() #41 type=Signal,
signature=locating_completed() #42 type=Signal, signature=clear_track() #43
type=Signal, signature=figure_state_changed(PyObject,bool), parameters=PyObject,
bool #44 type=Signal, signature=figure_diags_changed(bool), parameters=bool #45
type=Signal, signature=maneuver_endpts_changed(bool), parameters=bool #46
type=Signal, signature=relocate_cam() #47 type=Signal,
signature=manipulate_sphere(PyObject), parameters=PyObject #48 type=Signal,
signature=figure_mark(bool), parameters=bool #49 type=Signal,
signature=pause_resume())

stop_processor

class videof2b.ui.main_window.UIMainWindow

Bases: object

Define the UI layout.

setup_ui(main_window)
Create the UI here.

videof2b.ui.style module

Define UI styles.

videof2b.ui.video_window module

The video window of VideoF2B application.

class videof2b.ui.video_window.VideoWindow(parent, **kwargs)
Bases: QLabel

The window that displays video frames during processing.

clear()

Overridden method to clear our custom pixmap.

Return type
None

property is_mouse_enabled

Indicates whether the video window reacts to mouse events.

17.1. videof2b package 75

VideoF2B

mousePressEvent(event)
Overridden event so that we react to mouse clicks as needed.

Return type
None

point_added

point_removed

resizeEvent(event)
Overridden event so that our window resizes with its parent while maintaining the loaded image’s original
aspect ratio.

Return type
None

staticMetaObject = PySide6.QtCore.QMetaObject("VideoWindow" inherits "QLabel":
Methods: #47 type=Signal, signature=point_added(PyObject), parameters=PyObject #48
type=Signal, signature=point_removed(PyObject), parameters=PyObject)

update_frame(frame)
Set a new video frame in the window.

Return type
None

videof2b.ui.widgets module

This module contains various custom widgets for the UI.

class videof2b.ui.widgets.FileDialog

Bases: QFileDialog

A wrapped QFileDialog compatible with Path objects.

classmethod getExistingDirectory(*args, **kwargs)
Thin wrapper of getExistingDirectory compatible with Path objects as args.

Return type
pathlib.Path

classmethod getOpenFileName(*args, **kwargs)
Thin wrapper of getOpenFileName compatible with Path objects as args.

Return type
tuple[pathlib.Path, str]

classmethod getOpenFileNames(*args, **kwargs)
Thin wrapper of getOpenFileNames compatible with Path objects as args.

Return type
tuple[list[pathlib.Path], str]

classmethod getSaveFileName(*args, **kwargs)
Thin wrapper of getSaveFileName compatible with Path objects as args.

Return type
tuple[pathlib.Path | None, str]

76 Chapter 17. videof2b

VideoF2B

staticMetaObject = PySide6.QtCore.QMetaObject("FileDialog" inherits "QFileDialog":
)

class videof2b.ui.widgets.PathEdit(parent=None, path_type=PathEditType.FILES, caption=None,
initial_path=None)

Bases: QWidget

Custom QWidget subclass for selecting a file or directory.

on_browse_button_clicked()

Shows the QFileDialog when the browse button is clicked. Emits path_changed if appropriate.

Return type
None

on_line_edit_editing_finished()

Updates path and emits path_changed when the line edit has finished being edited.

Return type
None

on_new_path(path)
If the given path is different from current path, updates path and emits the path_changed Signal.

Parameters
path (Path) – The new path

Return type
None

property path

Returns the selected path.

Returns
The selected path

Return type
Path

path_changed

property path_type

Returns the path type. Path type specifies selecting a file or directory.

Returns
The type selected

Return type
PathType

staticMetaObject = PySide6.QtCore.QMetaObject("PathEdit" inherits "QWidget":
Methods: #34 type=Signal, signature=path_changed(PyObject), parameters=PyObject)

update_button_tool_tips()

Updates the button tooltips during init and when path_type changes.

Return type
None

17.1. videof2b package 77

VideoF2B

class videof2b.ui.widgets.PathEditType(value)
Bases: Enum

Specifies the type of browser in a PathEdit.

DIRECTORIES = 2

FILES = 1

class videof2b.ui.widgets.QHLine

Bases: QFrame

A horizontal line widget.

staticMetaObject = PySide6.QtCore.QMetaObject("QHLine" inherits "QFrame":)

class videof2b.ui.widgets.QVLine

Bases: QFrame

A vertical line widget.

staticMetaObject = PySide6.QtCore.QMetaObject("QVLine" inherits "QFrame":)

Module contents

The ui module provides the core user interface for VideoF2B

17.1.2 Submodules

17.1.3 videof2b.app module

Main VideoF2B application.

class videof2b.app.VideoF2B

Bases: QObject

The main application runner for VideoF2B.

hook_exception(exc_type, value, traceback)
Add an exception hook so that any uncaught exceptions are displayed in this window rather than someplace
where users cannot see it and cannot report when we encounter these problems.

Parameters
• exc_type – The class of exception.

• value – The actual exception object.

• traceback – A traceback object with the details of where the exception occurred.

run(app)
The main method. Makes the necessary preparations, then runs the given app.

static set_busy_cursor()

Sets the Busy Cursor for the Application.

static set_normal_cursor()

Sets the Normal Cursor for the Application.

78 Chapter 17. videof2b

VideoF2B

staticMetaObject = PySide6.QtCore.QMetaObject("VideoF2B" inherits "QObject":)

videof2b.app.start()

Programmatic entry point of VideoF2B.

17.1.4 Module contents

The videof2b package contains all VideoF2B functionality.

17.1. videof2b package 79

VideoF2B

80 Chapter 17. videof2b

CHAPTER

EIGHTEEN

GUIDE FOR EDITORS OF THIS GUIDE

This documentation uses reStructured Text (reST) as its markup language. The structure and syntax borrow shame-
lessly from the excellent Inkscape Beginners’ Guide. Please refer to the Sample Chapter for an outline of the syntax
and most of the elements used in this guide.

Note: Only some of the custom styling used in the Inkscape guide applies to this guide. When in doubt, refer to files in
the static folder of this documentation for implementation details. Edit them as necessary to suit our styling needs.

81

https://inkscape-manuals.readthedocs.io/en/latest/index.html
https://inkscape-manuals.readthedocs.io/en/latest/sample-chapter.html

VideoF2B

82 Chapter 18. Guide for Editors of This Guide

PYTHON MODULE INDEX

v
videof2b, 79
videof2b.app, 78
videof2b.core, 69
videof2b.core.calibration, 53
videof2b.core.camera, 54
videof2b.core.camera_director, 54
videof2b.core.common, 51
videof2b.core.common.path, 49
videof2b.core.common.settings, 50
videof2b.core.common.singleton, 51
videof2b.core.common.store, 51
videof2b.core.detection, 55
videof2b.core.drawing, 55
videof2b.core.figure_tracker, 58
videof2b.core.figures, 59
videof2b.core.flight, 60
videof2b.core.geometry, 60
videof2b.core.imaging, 66
videof2b.core.processor, 66
videof2b.core.projection, 68
videof2b.ui, 78
videof2b.ui.about_window, 69
videof2b.ui.camera_cal_dialog, 69
videof2b.ui.camera_director_dialog, 70
videof2b.ui.exception_dialog, 71
videof2b.ui.icons, 72
videof2b.ui.load_flight_dialog, 72
videof2b.ui.main_window, 72
videof2b.ui.style, 75
videof2b.ui.video_window, 75
videof2b.ui.widgets, 76

83

VideoF2B

84 Python Module Index

INDEX

A
A (videof2b.core.camera_director.CamDirector prop-

erty), 54
AboutDialog (class in videof2b.ui.about_window), 69
accept() (videof2b.ui.load_flight_dialog.LoadFlightDialog

method), 72
add() (videof2b.core.common.store.Store method), 51
add() (videof2b.core.drawing.Scene method), 57
add_actual_point() (videof2b.core.figure_tracker.FigureTracker

method), 58
add_diag() (videof2b.core.drawing.Scene method), 57
add_endpt() (videof2b.core.drawing.Scene method), 57
add_locator_point() (videof2b.core.flight.Flight

method), 60
add_locator_point()

(videof2b.core.processor.VideoProcessor
method), 66

angle() (in module videof2b.core.geometry), 62
application (videof2b.core.common.store.StoreProperties

property), 51
AR, 47
ar_geometry_available

(videof2b.core.processor.VideoProcessor
attribute), 66

ArgumentError, 60
Augmented Reality, 47

B
Base, 47
BLACK (videof2b.core.drawing.Colors attribute), 55
BLUE (videof2b.core.drawing.Colors attribute), 55

C
C (videof2b.core.camera_director.CamDirector prop-

erty), 54
calc_equilateral_sigma() (in module

videof2b.core.geometry), 62
calc_tri_loop_params() (in module

videof2b.core.geometry), 62
CalCamera (class in videof2b.core.camera), 54
calculate() (videof2b.core.geometry.Fillet method), 61

CalibratorReturnCodes (class in
videof2b.core.calibration), 53

cam_distance_limits
(videof2b.core.camera_director.CamDirector
property), 55

cam_tangent_elev_limits
(videof2b.core.camera_director.CamDirector
property), 55

cam_view_limits (videof2b.core.camera_director.CamDirector
property), 55

CamDirector (class in videof2b.core.camera_director),
54

CamDirectorDialog (class in
videof2b.ui.camera_director_dialog), 70

CamDirectorInputsModel (class in
videof2b.ui.camera_director_dialog), 70

CamDirectorResultsModel (class in
videof2b.ui.camera_director_dialog), 70

CameraCalibrationDialog (class in
videof2b.ui.camera_cal_dialog), 69

CameraCalibrator (class in videof2b.core.calibration),
53

cartesian_to_spherical() (in module
videof2b.core.geometry), 63

clear() (videof2b.core.detection.Detector method), 55
clear() (videof2b.ui.video_window.VideoWindow

method), 75
clear_locator_points() (videof2b.core.flight.Flight

method), 60
clear_track (videof2b.ui.main_window.MainWindow

attribute), 72
clear_track() (videof2b.core.processor.VideoProcessor

method), 66
closeEvent() (videof2b.ui.main_window.MainWindow

method), 72
Colors (class in videof2b.core.drawing), 55
columnCount() (videof2b.ui.camera_director_dialog.CamDirectorResultsModel

method), 70
create() (videof2b.core.common.store.Store class

method), 51
create() (videof2b.core.figures.Figure static method),

59

85

VideoF2B

cv_img_to_qimg() (in module videof2b.core.imaging),
66

CYAN (videof2b.core.drawing.Colors attribute), 55

D
DarkGreen (videof2b.core.drawing.Colors attribute), 55
DashedPolyline (class in videof2b.core.drawing), 56
data() (videof2b.ui.camera_director_dialog.CamDirectorInputsModel

method), 70
data() (videof2b.ui.camera_director_dialog.CamDirectorResultsModel

method), 71
DEFAULT_A (videof2b.core.camera_director.CamDirector

attribute), 54
DEFAULT_C (videof2b.core.camera_director.CamDirector

attribute), 54
DEFAULT_G (videof2b.core.camera_director.CamDirector

attribute), 54
DEFAULT_N (videof2b.core.drawing.Drawing attribute),

56
DEFAULT_R (videof2b.core.camera_director.CamDirector

attribute), 54
Detector (class in videof2b.core.detection), 55
diags_on (videof2b.core.drawing.Scene property), 57
DIRECTORIES (videof2b.ui.widgets.PathEditType at-

tribute), 78
draw() (videof2b.core.drawing.DashedPolyline method),

56
draw() (videof2b.core.drawing.Drawing method), 56
draw() (videof2b.core.drawing.DummyScene method),

56
draw() (videof2b.core.drawing.Plot method), 57
draw() (videof2b.core.drawing.Polyline method), 57
draw() (videof2b.core.drawing.Scatter method), 57
draw() (videof2b.core.drawing.Scene method), 58
draw_diags (videof2b.core.drawing.Drawing property),

56
draw_endpts (videof2b.core.drawing.Drawing prop-

erty), 56
Drawing (class in videof2b.core.drawing), 56
DummyScene (class in videof2b.core.drawing), 56

E
EdgePolyline (class in videof2b.core.drawing), 57
endpts_on (videof2b.core.drawing.Scene property), 58
error_occurred (videof2b.core.calibration.CameraCalibrator

attribute), 53
error_occurred (videof2b.core.processor.VideoProcessor

attribute), 67
EXCEPTION_OCCURRED (videof2b.core.calibration.CalibratorReturnCodes

attribute), 53
EXCEPTION_OCCURRED (videof2b.core.processor.ProcessorReturnCodes

attribute), 66
ExceptionDialog (class in

videof2b.ui.exception_dialog), 71

exec() (videof2b.ui.exception_dialog.ExceptionDialog
method), 71

export() (videof2b.core.figure_tracker.FigureTracker
method), 58

F
Field of view, 47
Figure, 47
Figure (class in videof2b.core.figures), 59
figure_diags_changed

(videof2b.ui.main_window.MainWindow
attribute), 72

FIGURE_MAP (videof2b.core.figure_tracker.FigureTracker
attribute), 58

figure_mark (videof2b.ui.main_window.MainWindow
attribute), 72

figure_state_changed
(videof2b.ui.main_window.MainWindow
attribute), 72

FigureDiagnostics (class in videof2b.core.figures), 59
FigureTracker (class in videof2b.core.figure_tracker),

58
FigureTypes (class in videof2b.core.common), 51
FileDialog (class in videof2b.ui.widgets), 76
FILES (videof2b.ui.widgets.PathEditType attribute), 78
files_to_paths() (in module

videof2b.core.common.path), 49
Fillet (class in videof2b.core.geometry), 60
find_min_gss() (in module videof2b.core.figures), 59
finish_all() (videof2b.core.figure_tracker.FigureTracker

method), 58
finish_figure() (videof2b.core.figure_tracker.FigureTracker

method), 59
finished (videof2b.core.calibration.CameraCalibrator

attribute), 53
finished (videof2b.core.processor.VideoProcessor at-

tribute), 67
fit() (videof2b.core.figures.Figure method), 59
fit() (videof2b.core.figures.InsideLoops method), 59
flags() (videof2b.ui.camera_director_dialog.CamDirectorInputsModel

method), 70
flags() (videof2b.ui.camera_director_dialog.CamDirectorResultsModel

method), 71
Flight (class in videof2b.core.flight), 60
Flight circle, 47
Flight hemisphere, 47
Flight radius, 47
FOUR_LEAF_CLOVER (videof2b.core.common.FigureTypes

attribute), 51
FOV, 47

G
G (videof2b.core.camera_director.CamDirector prop-

erty), 55

86 Index

VideoF2B

get() (videof2b.core.common.store.Store method), 51
get_app_metadata() (in module

videof2b.core.common), 52
get_arc() (in module videof2b.core.geometry), 63
get_bundle_dir() (in module videof2b.core.common),

52
get_cone_alpha() (in module videof2b.core.geometry),

63
get_cone_d() (in module videof2b.core.geometry), 64
get_cone_delta() (in module videof2b.core.geometry),

64
get_equilateral_height() (in module

videof2b.core.geometry), 65
get_equilateral_phi() (in module

videof2b.core.geometry), 65
get_fillet_theta() (videof2b.core.geometry.Fillet

static method), 61
get_frozen_path() (in module

videof2b.core.common), 52
get_lib_versions() (in module

videof2b.core.common), 52
get_nom_point() (videof2b.core.figures.Figure

method), 59
getExistingDirectory()

(videof2b.ui.widgets.FileDialog class method),
76

getOpenFileName() (videof2b.ui.widgets.FileDialog
class method), 76

getOpenFileNames() (videof2b.ui.widgets.FileDialog
class method), 76

getSaveFileName() (videof2b.ui.widgets.FileDialog
class method), 76

GRAY20 (videof2b.core.drawing.Colors attribute), 56
Great circle, 47
GREEN (videof2b.core.drawing.Colors attribute), 56

H
headerData() (videof2b.ui.camera_director_dialog.CamDirectorInputsModel

method), 70
headerData() (videof2b.ui.camera_director_dialog.CamDirectorResultsModel

method), 71
hook_exception() (videof2b.app.VideoF2B method),

78
Horizontal, 47
HORIZONTAL_EIGHTS (videof2b.core.common.FigureTypes

attribute), 51
HORIZONTAL_SQUARE_EIGHTS

(videof2b.core.common.FigureTypes attribute),
51

HOURGLASS (videof2b.core.common.FigureTypes at-
tribute), 51

I
im_width (videof2b.core.processor.ProcessorSettings at-

tribute), 66
INSIDE_LOOPS (videof2b.core.common.FigureTypes at-

tribute), 51
INSIDE_SQUARE_LOOPS

(videof2b.core.common.FigureTypes attribute),
52

INSIDE_TRIANGULAR_LOOPS
(videof2b.core.common.FigureTypes attribute),
52

InsideLoops (class in videof2b.core.figures), 59
INSUFFICIENT_VALID_FRAMES

(videof2b.core.calibration.CalibratorReturnCodes
attribute), 53

Inverted, 47
INVERTED_FLIGHT (videof2b.core.common.FigureTypes

attribute), 52
is_linux() (in module videof2b.core.common), 52
is_mouse_enabled (videof2b.ui.video_window.VideoWindow

property), 75
is_win() (in module videof2b.core.common), 53

L
LANDING (videof2b.core.common.FigureTypes attribute),

52
Lateral reference, 47
launch_document() (in module

videof2b.core.common), 53
Level, 47
live_videos (videof2b.core.processor.ProcessorSettings

attribute), 66
load_calibration() (videof2b.core.camera.CalCamera

method), 54
load_flight() (videof2b.core.processor.VideoProcessor

method), 67
load_settings() (videof2b.ui.main_window.MainWindow

method), 72
LoadFlightDialog (class in

videof2b.ui.load_flight_dialog), 72
locate() (videof2b.core.camera.CalCamera method),

54
locate() (videof2b.core.drawing.Drawing method), 56
locating_completed (videof2b.ui.main_window.MainWindow

attribute), 72
locating_started (videof2b.core.processor.VideoProcessor

attribute), 67
locator_points_changed (videof2b.core.flight.Flight

attribute), 60
locator_points_changed

(videof2b.core.processor.VideoProcessor
attribute), 67

locator_points_defined (videof2b.core.flight.Flight
attribute), 60

locator_points_defined
(videof2b.core.processor.VideoProcessor

Index 87

VideoF2B

attribute), 67

M
MAGENTA (videof2b.core.drawing.Colors attribute), 56
MainWindow (class in videof2b.ui.main_window), 72
Maneuver, 48
maneuver_endpts_changed

(videof2b.ui.main_window.MainWindow
attribute), 73

ManeuverPoint (class in videof2b.core.drawing), 57
manipulate_sphere (videof2b.ui.main_window.MainWindow

attribute), 73
manipulate_sphere()

(videof2b.core.processor.VideoProcessor
method), 67

Manoeuvre, 48
mark_figure() (videof2b.core.processor.VideoProcessor

method), 67
max_track_time (videof2b.core.processor.ProcessorSettings

attribute), 66
module

videof2b, 79
videof2b.app, 78
videof2b.core, 69
videof2b.core.calibration, 53
videof2b.core.camera, 54
videof2b.core.camera_director, 54
videof2b.core.common, 51
videof2b.core.common.path, 49
videof2b.core.common.settings, 50
videof2b.core.common.singleton, 51
videof2b.core.common.store, 51
videof2b.core.detection, 55
videof2b.core.drawing, 55
videof2b.core.figure_tracker, 58
videof2b.core.figures, 59
videof2b.core.flight, 60
videof2b.core.geometry, 60
videof2b.core.imaging, 66
videof2b.core.processor, 66
videof2b.core.projection, 68
videof2b.ui, 78
videof2b.ui.about_window, 69
videof2b.ui.camera_cal_dialog, 69
videof2b.ui.camera_director_dialog, 70
videof2b.ui.exception_dialog, 71
videof2b.ui.icons, 72
videof2b.ui.load_flight_dialog, 72
videof2b.ui.main_window, 72
videof2b.ui.style, 75
videof2b.ui.video_window, 75
videof2b.ui.widgets, 76

Momentarily, 48
Momentary, 48

mousePressEvent() (videof2b.ui.video_window.VideoWindow
method), 75

move_center_x() (videof2b.core.drawing.Drawing
method), 56

move_center_y() (videof2b.core.drawing.Drawing
method), 56

MOVE_EAST (videof2b.core.common.SphereManipulations
attribute), 52

MOVE_NORTH (videof2b.core.common.SphereManipulations
attribute), 52

MOVE_SOUTH (videof2b.core.common.SphereManipulations
attribute), 52

MOVE_WEST (videof2b.core.common.SphereManipulations
attribute), 52

MyIcons (class in videof2b.ui.icons), 72

N
new_frame_available

(videof2b.core.calibration.CameraCalibrator
attribute), 53

new_frame_available
(videof2b.core.processor.VideoProcessor
attribute), 67

NO_VALID_FRAMES (videof2b.core.calibration.CalibratorReturnCodes
attribute), 53

Nominal, 48
NORMAL (videof2b.core.calibration.CalibratorReturnCodes

attribute), 53
NORMAL (videof2b.core.processor.ProcessorReturnCodes

attribute), 66

O
obj_point_names (videof2b.core.flight.Flight at-

tribute), 60
on_ar_geometry_available()

(videof2b.ui.main_window.MainWindow
method), 73

on_attach_file_button_clicked()
(videof2b.ui.exception_dialog.ExceptionDialog
method), 71

on_browse_button_clicked()
(videof2b.ui.widgets.PathEdit method), 77

on_cal_finished() (videof2b.ui.main_window.MainWindow
method), 73

on_cal_thread_finished()
(videof2b.ui.main_window.MainWindow
method), 73

on_calibrate_cam() (videof2b.ui.main_window.MainWindow
method), 73

on_chk_diag_changed()
(videof2b.ui.main_window.MainWindow
method), 73

on_chk_endpts_changed()
(videof2b.ui.main_window.MainWindow

88 Index

VideoF2B

method), 73
on_chk_figure_changed()

(videof2b.ui.main_window.MainWindow
method), 73

on_clear_track() (videof2b.ui.main_window.MainWindow
method), 73

on_description_updated()
(videof2b.ui.exception_dialog.ExceptionDialog
method), 71

on_doc_open() (videof2b.ui.camera_cal_dialog.CameraCalibrationDialog
method), 69

on_figure_end() (videof2b.ui.main_window.MainWindow
method), 73

on_figure_start() (videof2b.ui.main_window.MainWindow
method), 73

on_fisheye_changed()
(videof2b.ui.camera_cal_dialog.CameraCalibrationDialog
method), 69

on_help_about() (videof2b.ui.main_window.MainWindow
method), 73

on_image_display() (videof2b.ui.camera_cal_dialog.CameraCalibrationDialog
method), 69

on_line_edit_editing_finished()
(videof2b.ui.widgets.PathEdit method), 77

on_load_flight() (videof2b.ui.main_window.MainWindow
method), 73

on_loc_pts_changed()
(videof2b.ui.main_window.MainWindow
method), 73

on_loc_pts_defined()
(videof2b.ui.main_window.MainWindow
method), 73

on_locating_started()
(videof2b.ui.main_window.MainWindow
method), 73

on_locator_points_changed()
(videof2b.core.flight.Flight method), 60

on_locator_points_changed()
(videof2b.core.processor.VideoProcessor
method), 67

on_locator_points_defined()
(videof2b.core.processor.VideoProcessor
method), 67

on_move_east() (videof2b.ui.main_window.MainWindow
method), 73

on_move_north() (videof2b.ui.main_window.MainWindow
method), 73

on_move_reset() (videof2b.ui.main_window.MainWindow
method), 73

on_move_south() (videof2b.ui.main_window.MainWindow
method), 74

on_move_west() (videof2b.ui.main_window.MainWindow
method), 74

on_new_path() (videof2b.ui.widgets.PathEdit method),

77
on_new_solution() (videof2b.ui.camera_director_dialog.CamDirectorDialog

method), 70
on_next_figure() (videof2b.ui.main_window.MainWindow

method), 74
on_path_changed() (videof2b.ui.camera_cal_dialog.CameraCalibrationDialog

method), 69
on_pause_resume() (videof2b.ui.main_window.MainWindow

method), 74
on_paused_resumed()

(videof2b.ui.main_window.MainWindow
method), 74

on_place_cam() (videof2b.ui.main_window.MainWindow
method), 74

on_proc_finished() (videof2b.ui.main_window.MainWindow
method), 74

on_proc_starting() (videof2b.ui.main_window.MainWindow
method), 74

on_proc_thread_finished()
(videof2b.ui.main_window.MainWindow
method), 74

on_progress_updated()
(videof2b.ui.main_window.MainWindow
method), 74

on_relocate_cam() (videof2b.ui.main_window.MainWindow
method), 74

on_restart_flight()
(videof2b.ui.main_window.MainWindow
method), 74

on_rotate_ccw() (videof2b.ui.main_window.MainWindow
method), 74

on_rotate_cw() (videof2b.ui.main_window.MainWindow
method), 74

on_save_report_button_clicked()
(videof2b.ui.exception_dialog.ExceptionDialog
method), 71

on_skip_locate_changed()
(videof2b.ui.load_flight_dialog.LoadFlightDialog
method), 72

on_stop_proc() (videof2b.ui.main_window.MainWindow
method), 74

on_track_cleared() (videof2b.ui.main_window.MainWindow
method), 74

OUTSIDE_LOOPS (videof2b.core.common.FigureTypes at-
tribute), 52

OUTSIDE_SQUARE_LOOPS
(videof2b.core.common.FigureTypes attribute),
52

OVERHEAD_EIGHTS (videof2b.core.common.FigureTypes
attribute), 52

P
Parallel, 48
path (videof2b.ui.widgets.PathEdit property), 77

Index 89

VideoF2B

path_changed (videof2b.ui.widgets.PathEdit attribute),
77

path_to_str() (in module
videof2b.core.common.path), 49

path_type (videof2b.ui.widgets.PathEdit property), 77
PathEdit (class in videof2b.ui.widgets), 77
PathEditType (class in videof2b.ui.widgets), 77
pause_resume (videof2b.ui.main_window.MainWindow

attribute), 74
pause_resume() (videof2b.core.processor.VideoProcessor

method), 67
paused (videof2b.core.processor.VideoProcessor at-

tribute), 67
perform_3d_tracking

(videof2b.core.processor.ProcessorSettings
attribute), 66

Plot (class in videof2b.core.drawing), 57
point_added (videof2b.ui.video_window.VideoWindow

attribute), 76
point_removed (videof2b.ui.video_window.VideoWindow

attribute), 76
Polyline (class in videof2b.core.drawing), 57
pop_locator_point() (videof2b.core.flight.Flight

method), 60
pop_locator_point()

(videof2b.core.processor.VideoProcessor
method), 67

POSE_ESTIMATION_FAILED
(videof2b.core.processor.ProcessorReturnCodes
attribute), 66

process() (videof2b.core.detection.Detector method),
55

ProcessorReturnCodes (class in
videof2b.core.processor), 66

ProcessorSettings (class in videof2b.core.processor),
66

progress_updated (videof2b.core.calibration.CameraCalibrator
attribute), 53

progress_updated (videof2b.core.processor.VideoProcessor
attribute), 67

project_image_point_to_sphere() (in module
videof2b.core.projection), 68

project_sphere_points_to_image() (in module
videof2b.core.projection), 69

Q
QHLine (class in videof2b.ui.widgets), 78
QVLine (class in videof2b.ui.widgets), 78

R
R (videof2b.core.camera_director.CamDirector prop-

erty), 55
RED (videof2b.core.drawing.Colors attribute), 56

relocate() (videof2b.core.processor.VideoProcessor
method), 67

relocate_cam (videof2b.ui.main_window.MainWindow
attribute), 74

remove() (videof2b.core.common.store.Store method),
51

replace_params() (in module
videof2b.core.common.path), 49

RESET_CENTER (videof2b.core.common.SphereManipulations
attribute), 52

reset_center() (videof2b.core.drawing.Drawing
method), 56

resizeEvent() (videof2b.ui.video_window.VideoWindow
method), 76

restart() (videof2b.core.flight.Flight method), 60
REVERSE_WINGOVER (videof2b.core.common.FigureTypes

attribute), 52
ROTATE_CCW (videof2b.core.common.SphereManipulations

attribute), 52
ROTATE_CW (videof2b.core.common.SphereManipulations

attribute), 52
rowCount() (videof2b.ui.camera_director_dialog.CamDirectorInputsModel

method), 70
rowCount() (videof2b.ui.camera_director_dialog.CamDirectorResultsModel

method), 71
run() (videof2b.app.VideoF2B method), 78
run() (videof2b.core.calibration.CameraCalibrator

method), 53
run() (videof2b.core.processor.VideoProcessor method),

67

S
save_settings() (videof2b.ui.main_window.MainWindow

method), 75
Scatter (class in videof2b.core.drawing), 57
Scene (class in videof2b.core.drawing), 57
Segment, 48
set_azimuth() (videof2b.core.drawing.Drawing

method), 56
set_busy_cursor() (videof2b.app.VideoF2B static

method), 78
set_normal_cursor() (videof2b.app.VideoF2B static

method), 78
setData() (videof2b.ui.camera_director_dialog.CamDirectorInputsModel

method), 70
Settings (class in videof2b.core.common.settings), 50
settings (videof2b.core.common.store.StoreProperties

property), 51
setup_model() (videof2b.ui.camera_director_dialog.CamDirectorDialog

method), 70
setup_ui() (videof2b.ui.about_window.AboutDialog

method), 69
setup_ui() (videof2b.ui.camera_cal_dialog.CameraCalibrationDialog

method), 69

90 Index

VideoF2B

setup_ui() (videof2b.ui.camera_director_dialog.CamDirectorDialog
method), 70

setup_ui() (videof2b.ui.exception_dialog.ExceptionDialog
method), 71

setup_ui() (videof2b.ui.load_flight_dialog.LoadFlightDialog
method), 72

setup_ui() (videof2b.ui.main_window.UIMainWindow
method), 75

Singleton (class in videof2b.core.common.singleton),
51

Small circle, 48
solve() (videof2b.core.camera_director.CamDirector

method), 55
Sphere, 48
sphere_rot_delta (videof2b.core.processor.ProcessorSettings

attribute), 66
sphere_xy_delta (videof2b.core.processor.ProcessorSettings

attribute), 66
SphereManipulations (class in

videof2b.core.common), 52
spherical_to_cartesian() (in module

videof2b.core.geometry), 65
start() (in module videof2b.app), 79
start_cal_thread() (videof2b.ui.main_window.MainWindow

method), 75
start_figure() (videof2b.core.figure_tracker.FigureTracker

method), 59
start_proc_thread()

(videof2b.ui.main_window.MainWindow
method), 75

staticMetaObject (videof2b.app.VideoF2B attribute),
78

staticMetaObject (videof2b.core.calibration.CameraCalibrator
attribute), 54

staticMetaObject (videof2b.core.camera.CalCamera
attribute), 54

staticMetaObject (videof2b.core.common.settings.Settings
attribute), 50

staticMetaObject (videof2b.core.flight.Flight at-
tribute), 60

staticMetaObject (videof2b.core.processor.VideoProcessor
attribute), 68

staticMetaObject (videof2b.ui.about_window.AboutDialog
attribute), 69

staticMetaObject (videof2b.ui.camera_cal_dialog.CameraCalibrationDialog
attribute), 69

staticMetaObject (videof2b.ui.camera_director_dialog.CamDirectorDialog
attribute), 70

staticMetaObject (videof2b.ui.camera_director_dialog.CamDirectorInputsModel
attribute), 70

staticMetaObject (videof2b.ui.camera_director_dialog.CamDirectorResultsModel
attribute), 71

staticMetaObject (videof2b.ui.exception_dialog.ExceptionDialog
attribute), 71

staticMetaObject (videof2b.ui.load_flight_dialog.LoadFlightDialog
attribute), 72

staticMetaObject (videof2b.ui.main_window.MainWindow
attribute), 75

staticMetaObject (videof2b.ui.video_window.VideoWindow
attribute), 76

staticMetaObject (videof2b.ui.widgets.FileDialog at-
tribute), 76

staticMetaObject (videof2b.ui.widgets.PathEdit
attribute), 77

staticMetaObject (videof2b.ui.widgets.QHLine
attribute), 78

staticMetaObject (videof2b.ui.widgets.QVLine at-
tribute), 78

stop() (videof2b.core.calibration.CameraCalibrator
method), 54

stop() (videof2b.core.processor.VideoProcessor
method), 68

stop_locating() (videof2b.core.processor.VideoProcessor
method), 68

stop_processor (videof2b.ui.main_window.MainWindow
attribute), 75

Store (class in videof2b.core.common.store), 51
StoreProperties (class in

videof2b.core.common.store), 51
str_to_path() (in module

videof2b.core.common.path), 50
Straight line, 48

T
TAKEOFF (videof2b.core.common.FigureTypes attribute),

52
test() (in module videof2b.core.figures), 59
TOO_MANY_EMPTY_FRAMES

(videof2b.core.processor.ProcessorReturnCodes
attribute), 66

Top of circle, 48
track_cleared (videof2b.core.processor.VideoProcessor

attribute), 68

U
u (videof2b.core.figures.Figure attribute), 59
UIMainWindow (class in videof2b.ui.main_window), 75
UNDEFINED (videof2b.core.calibration.CalibratorReturnCodes

attribute), 53
UNDEFINED (videof2b.core.processor.ProcessorReturnCodes

attribute), 66
undistort() (videof2b.core.camera.CalCamera

method), 54
update_button_tool_tips()

(videof2b.ui.widgets.PathEdit method), 77
update_figure_diags()

(videof2b.core.processor.VideoProcessor
method), 68

Index 91

VideoF2B

update_figure_state()
(videof2b.core.processor.VideoProcessor
method), 68

update_frame() (videof2b.ui.video_window.VideoWindow
method), 76

update_maneuver_endpts()
(videof2b.core.processor.VideoProcessor
method), 68

Upright, 48
USER_CANCELED (videof2b.core.calibration.CalibratorReturnCodes

attribute), 53
USER_CANCELED (videof2b.core.processor.ProcessorReturnCodes

attribute), 66
UserError, 59

V
value() (videof2b.core.common.settings.Settings

method), 50
Vertical, 48
VERTICAL_EIGHTS (videof2b.core.common.FigureTypes

attribute), 52
videof2b

module, 79
VideoF2B (class in videof2b.app), 78
videof2b.app

module, 78
videof2b.core
module, 69

videof2b.core.calibration
module, 53

videof2b.core.camera
module, 54

videof2b.core.camera_director
module, 54

videof2b.core.common
module, 51

videof2b.core.common.path
module, 49

videof2b.core.common.settings
module, 50

videof2b.core.common.singleton
module, 51

videof2b.core.common.store
module, 51

videof2b.core.detection
module, 55

videof2b.core.drawing
module, 55

videof2b.core.figure_tracker
module, 58

videof2b.core.figures
module, 59

videof2b.core.flight
module, 60

videof2b.core.geometry
module, 60

videof2b.core.imaging
module, 66

videof2b.core.processor
module, 66

videof2b.core.projection
module, 68

videof2b.ui
module, 78

videof2b.ui.about_window
module, 69

videof2b.ui.camera_cal_dialog
module, 69

videof2b.ui.camera_director_dialog
module, 70

videof2b.ui.exception_dialog
module, 71

videof2b.ui.icons
module, 72

videof2b.ui.load_flight_dialog
module, 72

videof2b.ui.main_window
module, 72

videof2b.ui.style
module, 75

videof2b.ui.video_window
module, 75

videof2b.ui.widgets
module, 76

VideoProcessor (class in videof2b.core.processor), 66
VideoWindow (class in videof2b.ui.video_window), 75

W
WHITE (videof2b.core.drawing.Colors attribute), 56
Wingover path, 48

Y
YELLOW (videof2b.core.drawing.Colors attribute), 56

92 Index

	Installing VideoF2B
	The User Interface
	Ways to use VideoF2B
	Basic
	Augmented Reality

	Field setup
	Placing the Camera
	General Procedure
	Determining Camera Distance

	Producing Basic videos
	Producing Augmented-Reality Videos
	Camera Calibration
	Obtain the Calibration Pattern
	Record the Video
	Process the Video

	Loading a Flight
	Locating a Flight
	The World Coordinate System
	User Controls
	Pausing/Resuming Processing
	Clearing the Trace
	Manipulating the Flight Hemisphere
	Displaying Nominal Figures
	Displaying Start/End Points
	Displaying Diagnostic Points

	Cheatsheet of User Controls
	Getting help
	FAQ
	Glossary
	videof2b
	videof2b package
	Subpackages
	videof2b.core package
	Subpackages
	videof2b.core.common package
	Submodules
	videof2b.core.common.path module
	videof2b.core.common.settings module
	videof2b.core.common.singleton module
	videof2b.core.common.store module
	Module contents

	Submodules
	videof2b.core.calibration module
	videof2b.core.camera module
	videof2b.core.camera_director module
	videof2b.core.detection module
	videof2b.core.drawing module
	videof2b.core.figure_tracker module
	videof2b.core.figures module
	videof2b.core.flight module
	videof2b.core.geometry module
	videof2b.core.imaging module
	videof2b.core.processor module
	videof2b.core.projection module
	Module contents

	videof2b.ui package
	Submodules
	videof2b.ui.about_window module
	videof2b.ui.camera_cal_dialog module
	videof2b.ui.camera_director_dialog module
	videof2b.ui.exception_dialog module
	videof2b.ui.icons module
	videof2b.ui.load_flight_dialog module
	videof2b.ui.main_window module
	videof2b.ui.style module
	videof2b.ui.video_window module
	videof2b.ui.widgets module
	Module contents

	Submodules
	videof2b.app module
	Module contents

	Guide for Editors of This Guide
	Python Module Index
	Index

